Formula:KLS:14.17:16

From DRMF
Jump to navigation Jump to search


( 1 - q x - N - 1 ) ( 1 - c q x - N - 1 ) K n ( λ ( x ) ; c , N | q ) - c q 2 ( x - N - 1 ) ( 1 - q x ) ( 1 - c q x ) K n ( λ ( x - 1 ) ; c , N | q ) = q x ( 1 - q - N - 1 ) ( 1 - c q 2 x - N - 1 ) K n + 1 ( λ ( x ) ; c , N + 1 | q ) 1 superscript 𝑞 𝑥 𝑁 1 1 𝑐 superscript 𝑞 𝑥 𝑁 1 dual-q-Krawtchouk-polynomial-K 𝑛 𝜆 𝑥 𝑐 𝑁 𝑞 𝑐 superscript 𝑞 2 𝑥 𝑁 1 1 superscript 𝑞 𝑥 1 𝑐 superscript 𝑞 𝑥 dual-q-Krawtchouk-polynomial-K 𝑛 𝜆 𝑥 1 𝑐 𝑁 𝑞 superscript 𝑞 𝑥 1 superscript 𝑞 𝑁 1 1 𝑐 superscript 𝑞 2 𝑥 𝑁 1 dual-q-Krawtchouk-polynomial-K 𝑛 1 𝜆 𝑥 𝑐 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle(1-q^{x-N-1})(1-cq^{x-N-1})K_{n}\!% \left(\lambda(x);c,N|q\right){}-cq^{2(x-N-1)}(1-q^{x})(1-cq^{x})K_{n}\!\left(% \lambda(x-1);c,N|q\right){}=q^{x}(1-q^{-N-1})(1-cq^{2x-N-1})K_{n+1}\!\left(% \lambda(x);c,N+1|q\right)}}}

Substitution(s)

λ ( n ) = q - n - p q n 𝜆 𝑛 superscript 𝑞 𝑛 𝑝 superscript 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle\lambda(n)=q^{-n}-pq^{n}}}} &

λ ( x ) = q - x + c q x - N 𝜆 𝑥 superscript 𝑞 𝑥 𝑐 superscript 𝑞 𝑥 𝑁 {\displaystyle{\displaystyle{\displaystyle\lambda(x)=q^{-x}+cq^{x-N}}}} &
λ ( x ) := q - x + c q x - N assign 𝜆 𝑥 superscript 𝑞 𝑥 𝑐 superscript 𝑞 𝑥 𝑁 {\displaystyle{\displaystyle{\displaystyle\lambda(x):=q^{-x}+cq^{x-N}}}} &
λ ( n ) = q - n - p q n 𝜆 𝑛 superscript 𝑞 𝑛 𝑝 superscript 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle\lambda(n)=q^{-n}-pq^{n}}}} &

λ ( x ) = q - x + c q x - N 𝜆 𝑥 superscript 𝑞 𝑥 𝑐 superscript 𝑞 𝑥 𝑁 {\displaystyle{\displaystyle{\displaystyle\lambda(x)=q^{-x}+cq^{x-N}}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
K n subscript 𝐾 𝑛 {\displaystyle{\displaystyle{\displaystyle K_{n}}}}  : dual q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:dualqKrawtchouk

Bibliography

Equation in Section 14.17 of KLS.

URL links

We ask users to provide relevant URL links in this space.