Formula:DLMF:25.9:E1

From DRMF
Jump to navigation Jump to search


\RiemannZeta @ σ + i t = 1 n x 1 n s + χ ( s ) 1 n y 1 n 1 - s + \BigO @ x - σ + \BigO @ y σ - 1 t 1 2 - σ \RiemannZeta @ 𝜎 imaginary-unit 𝑡 subscript 1 𝑛 𝑥 1 superscript 𝑛 𝑠 𝜒 𝑠 subscript 1 𝑛 𝑦 1 superscript 𝑛 1 𝑠 \BigO @ superscript 𝑥 𝜎 \BigO @ superscript 𝑦 𝜎 1 superscript 𝑡 1 2 𝜎 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{\sigma+\mathrm{i}t}=% \sum_{1\leq n\leq x}\frac{1}{n^{s}}+\chi(s)\sum_{1\leq n\leq y}\frac{1}{n^{1-s% }}+\BigO@{x^{-\sigma}}+\BigO@{y^{\sigma-1}t^{\frac{1}{2}-\sigma}}}}}

Substitution(s)

s = σ + i t 𝑠 𝜎 imaginary-unit 𝑡 {\displaystyle{\displaystyle{\displaystyle s=\sigma+\mathrm{i}t}}} &
χ ( s ) = π s - 1 2 Γ ( 1 2 - 1 2 s ) / Γ ( 1 2 s ) 𝜒 𝑠 superscript 𝜋 𝑠 1 2 Euler-Gamma 1 2 1 2 𝑠 Euler-Gamma 1 2 𝑠 {\displaystyle{\displaystyle{\displaystyle{\displaystyle\chi(s)=\pi^{s-\frac{1% }{2}}\Gamma\left(\tfrac{1}{2}-\tfrac{1}{2}s\right)/\Gamma\left(\tfrac{1}{2}s% \right)}}}} &
t = 2 π x y 𝑡 2 𝜋 𝑥 𝑦 {\displaystyle{\displaystyle{\displaystyle t=2\pi xy}}}


Constraint(s)

x 1 𝑥 1 {\displaystyle{\displaystyle{\displaystyle x\geq 1}}} &
y 1 𝑦 1 {\displaystyle{\displaystyle{\displaystyle y\geq 1}}} &
0 σ 1 0 𝜎 1 {\displaystyle{\displaystyle{\displaystyle 0\leq\sigma\leq 1}}} &
formula valid as t 𝑡 {\displaystyle{\displaystyle{\displaystyle t\to\infty}}} with σ 𝜎 {\displaystyle{\displaystyle{\displaystyle\sigma}}} fixed


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
ζ 𝜁 {\displaystyle{\displaystyle{\displaystyle\zeta}}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
i i {\displaystyle{\displaystyle{\displaystyle\mathrm{i}}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Σ Σ {\displaystyle{\displaystyle{\displaystyle\Sigma}}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
O 𝑂 {\displaystyle{\displaystyle{\displaystyle O}}}  : order not exceeding : http://dlmf.nist.gov/2.1#E3
Γ Γ {\displaystyle{\displaystyle{\displaystyle\Gamma}}}  : Euler's gamma function : http://dlmf.nist.gov/5.2#E1

Bibliography

Equation (1), Section 25.9 of DLMF.

URL links

We ask users to provide relevant URL links in this space.