q-Meixner: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

q-Meixner

Basic hypergeometric representation

M n ( q - x ; b , c ; q ) = \qHyperrphis 21 @ @ q - n , q - x b q q - q n + 1 c q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 \qHyperrphis 21 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑥 𝑏 𝑞 𝑞 superscript 𝑞 𝑛 1 𝑐 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(q^{-x};b,c;q\right)=% \qHyperrphis{2}{1}@@{q^{-n},q^{-x}}{bq}{q}{-\frac{q^{n+1}}{c}}}}} {\displaystyle \qMeixner{n}@{q^{-x}}{b}{c}{q}=\qHyperrphis{2}{1}@@{q^{-n},q^{-x}}{bq}{q}{-\frac{q^{n+1}}{c}} }

Orthogonality relation(s)

x = 0 ( b q ; q ) x ( q , - b c q ; q ) x c x q \binomial x 2 M m ( q - x ; b , c ; q ) M n ( q - x ; b , c ; q ) = ( - c ; q ) ( - b c q ; q ) ( q , - c - 1 q ; q ) n ( b q ; q ) n q - n δ m , n superscript subscript 𝑥 0 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑥 q-Pochhammer-symbol 𝑞 𝑏 𝑐 𝑞 𝑞 𝑥 superscript 𝑐 𝑥 superscript 𝑞 \binomial 𝑥 2 q-Meixner-polynomial-M 𝑚 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑐 𝑞 q-Pochhammer-symbol 𝑏 𝑐 𝑞 𝑞 q-Pochhammer-symbol 𝑞 superscript 𝑐 1 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑛 superscript 𝑞 𝑛 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\sum_{x=0}^{\infty}\frac{\left(bq;q% \right)_{x}}{\left(q,-bcq;q\right)_{x}}c^{x}q^{\binomial{x}{2}}M_{m}\!\left(q^% {-x};b,c;q\right)M_{n}\!\left(q^{-x};b,c;q\right){}=\frac{\left(-c;q\right)_{% \infty}}{\left(-bcq;q\right)_{\infty}}\frac{\left(q,-c^{-1}q;q\right)_{n}}{% \left(bq;q\right)_{n}}q^{-n}\,\delta_{m,n}}}} {\displaystyle \sum_{x=0}^{\infty}\frac{\qPochhammer{bq}{q}{x}}{\qPochhammer{q,-bcq}{q}{x}}c^xq^{\binomial{x}{2}}\qMeixner{m}@{q^{-x}}{b}{c}{q}\qMeixner{n}@{q^{-x}}{b}{c}{q} {}=\frac{\qPochhammer{-c}{q}{\infty}}{\qPochhammer{-bcq}{q}{\infty}}\frac{\qPochhammer{q,-c^{-1}q}{q}{n}}{\qPochhammer{bq}{q}{n}}q^{-n}\,\Kronecker{m}{n} }

Constraint(s): 0 b q < 1 0 𝑏 𝑞 1 {\displaystyle{\displaystyle{\displaystyle 0\leq bq<1}}} &
c > 0 𝑐 0 {\displaystyle{\displaystyle{\displaystyle c>0}}}


Recurrence relation

q 2 n + 1 ( 1 - q - x ) M n ( q - x ) = c ( 1 - b q n + 1 ) M n + 1 ( q - x ) - [ c ( 1 - b q n + 1 ) + q ( 1 - q n ) ( c + q n ) ] M n ( q - x ) + q ( 1 - q n ) ( c + q n ) M n - 1 ( q - x ) superscript 𝑞 2 𝑛 1 1 superscript 𝑞 𝑥 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 𝑐 1 𝑏 superscript 𝑞 𝑛 1 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 delimited-[] 𝑐 1 𝑏 superscript 𝑞 𝑛 1 𝑞 1 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 𝑞 1 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle q^{2n+1}(1-q^{-x})M_{n}\!\left(q^{-% x}\right){}=c(1-bq^{n+1})M_{n+1}\!\left(q^{-x}\right){}-\left[c(1-bq^{n+1})+q(% 1-q^{n})(c+q^{n})\right]M_{n}\!\left(q^{-x}\right){}+q(1-q^{n})(c+q^{n})M_{n-1% }\!\left(q^{-x}\right)}}} {\displaystyle q^{2n+1}(1-q^{-x})\qMeixner{n}@@{q^{-x}}{b}{c}{q} {}=c(1-bq^{n+1})\qMeixner{n+1}@@{q^{-x}}{b}{c}{q} {}-\left[c(1-bq^{n+1})+q(1-q^n)(c+q^n)\right]\qMeixner{n}@@{q^{-x}}{b}{c}{q} {}+q(1-q^n)(c+q^n)\qMeixner{n-1}@@{q^{-x}}{b}{c}{q} }
M n ( q - x ) := M n ( q - x ; b , c ; q ) assign q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(q^{-x}\right):=M_{n}\!% \left(q^{-x};b,c;q\right)}}} {\displaystyle \qMeixner{n}@@{q^{-x}}{b}{c}{q}:=\qMeixner{n}@{q^{-x}}{b}{c}{q} }

Monic recurrence relation

x M ^ n ( x ) = M ^ n + 1 ( x ) + [ 1 + q - 2 n - 1 { c ( 1 - b q n + 1 ) + q ( 1 - q n ) ( c + q n ) } ] M ^ n ( x ) + c q - 4 n + 1 ( 1 - q n ) ( 1 - b q n ) ( c + q n ) M ^ n - 1 ( x ) 𝑥 q-Meixner-polynomial-monic-M 𝑛 𝑥 𝑏 𝑐 𝑞 q-Meixner-polynomial-monic-M 𝑛 1 𝑥 𝑏 𝑐 𝑞 delimited-[] 1 superscript 𝑞 2 𝑛 1 𝑐 1 𝑏 superscript 𝑞 𝑛 1 𝑞 1 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 q-Meixner-polynomial-monic-M 𝑛 𝑥 𝑏 𝑐 𝑞 𝑐 superscript 𝑞 4 𝑛 1 1 superscript 𝑞 𝑛 1 𝑏 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 q-Meixner-polynomial-monic-M 𝑛 1 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{M}}_{n}\!\left(x\right)=% {\widehat{M}}_{n+1}\!\left(x\right)+\left[1+q^{-2n-1}\left\{c(1-bq^{n+1})+q(1-% q^{n})(c+q^{n})\right\}\right]{\widehat{M}}_{n}\!\left(x\right){}+cq^{-4n+1}(1% -q^{n})(1-bq^{n})(c+q^{n}){\widehat{M}}_{n-1}\!\left(x\right)}}} {\displaystyle x\monicqMeixner{n}@@{x}{b}{c}{q}=\monicqMeixner{n+1}@@{x}{b}{c}{q}+ \left[1+q^{-2n-1}\left\{c(1-bq^{n+1})+q(1-q^n)(c+q^n)\right\}\right]\monicqMeixner{n}@@{x}{b}{c}{q} {}+cq^{-4n+1}(1-q^n)(1-bq^n)(c+q^n)\monicqMeixner{n-1}@@{x}{b}{c}{q} }
M n ( q - x ; b , c ; q ) = ( - 1 ) n q n 2 ( b q ; q ) n c n M ^ n ( q - x ) q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 superscript 1 𝑛 superscript 𝑞 superscript 𝑛 2 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑛 superscript 𝑐 𝑛 q-Meixner-polynomial-monic-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(q^{-x};b,c;q\right)=% \frac{(-1)^{n}q^{n^{2}}}{\left(bq;q\right)_{n}c^{n}}{\widehat{M}}_{n}\!\left(q% ^{-x}\right)}}} {\displaystyle \qMeixner{n}@{q^{-x}}{b}{c}{q}=\frac{(-1)^nq^{n^2}}{\qPochhammer{bq}{q}{n}c^n}\monicqMeixner{n}@@{q^{-x}}{b}{c}{q} }

q-Difference equation

- ( 1 - q n ) y ( x ) = B ( x ) y ( x + 1 ) - [ B ( x ) + D ( x ) ] y ( x ) + D ( x ) y ( x - 1 ) 1 superscript 𝑞 𝑛 𝑦 𝑥 𝐵 𝑥 𝑦 𝑥 1 delimited-[] 𝐵 𝑥 𝐷 𝑥 𝑦 𝑥 𝐷 𝑥 𝑦 𝑥 1 {\displaystyle{\displaystyle{\displaystyle-(1-q^{n})y(x)=B(x)y(x+1)-\left[B(x)% +D(x)\right]y(x)+D(x)y(x-1)}}} {\displaystyle -(1-q^n)y(x)=B(x)y(x+1)-\left[B(x)+D(x)\right]y(x)+D(x)y(x-1) }

Substitution(s): D ( x ) = ( 1 - q x ) ( 1 + b c q x ) 𝐷 𝑥 1 superscript 𝑞 𝑥 1 𝑏 𝑐 superscript 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle D(x)=(1-q^{x})(1+bcq^{x})}}} &

B ( x ) = c q x ( 1 - b q x + 1 ) 𝐵 𝑥 𝑐 superscript 𝑞 𝑥 1 𝑏 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle B(x)=cq^{x}(1-bq^{x+1})}}} &

y ( x ) = M n ( q - x ; b , c ; q ) 𝑦 𝑥 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=M_{n}\!\left(q^{-x};b,c;q% \right)}}}


Forward shift operator

M n ( q - x - 1 ; b , c ; q ) - M n ( q - x ; b , c ; q ) = - q - x ( 1 - q n ) c ( 1 - b q ) M n - 1 ( q - x ; b q , c q - 1 ; q ) q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 1 𝑏 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 superscript 𝑞 𝑥 1 superscript 𝑞 𝑛 𝑐 1 𝑏 𝑞 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 𝑞 𝑐 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(q^{-x-1};b,c;q\right)-% M_{n}\!\left(q^{-x};b,c;q\right){}=-\frac{q^{-x}(1-q^{n})}{c(1-bq)}M_{n-1}\!% \left(q^{-x};bq,cq^{-1};q\right)}}} {\displaystyle \qMeixner{n}@{q^{-x-1}}{b}{c}{q}-\qMeixner{n}@{q^{-x}}{b}{c}{q} {}=-\frac{q^{-x}(1-q^n)}{c(1-bq)}\qMeixner{n-1}@{q^{-x}}{bq}{cq^{-1}}{q} }
Δ M n ( q - x ; b , c ; q ) Δ q - x = - q ( 1 - q n ) c ( 1 - q ) ( 1 - b q ) M n - 1 ( q - x ; b q , c q - 1 ; q ) Δ q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 Δ superscript 𝑞 𝑥 𝑞 1 superscript 𝑞 𝑛 𝑐 1 𝑞 1 𝑏 𝑞 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 𝑞 𝑐 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\Delta M_{n}\!\left(q^{-x};b,c% ;q\right)}{\Delta q^{-x}}=-\frac{q(1-q^{n})}{c(1-q)(1-bq)}M_{n-1}\!\left(q^{-x% };bq,cq^{-1};q\right)}}} {\displaystyle \frac{\Delta \qMeixner{n}@{q^{-x}}{b}{c}{q}}{\Delta q^{-x}} =-\frac{q(1-q^n)}{c(1-q)(1-bq)}\qMeixner{n-1}@{q^{-x}}{bq}{cq^{-1}}{q} }

Backward shift operator

c q x ( 1 - b q x ) M n ( q - x ; b , c ; q ) - ( 1 - q x ) ( 1 + b c q x ) M n ( q - x + 1 ; b , c ; q ) = c q x ( 1 - b ) M n + 1 ( q - x ; b q - 1 , c q ; q ) 𝑐 superscript 𝑞 𝑥 1 𝑏 superscript 𝑞 𝑥 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 1 superscript 𝑞 𝑥 1 𝑏 𝑐 superscript 𝑞 𝑥 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 1 𝑏 𝑐 𝑞 𝑐 superscript 𝑞 𝑥 1 𝑏 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 superscript 𝑞 1 𝑐 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle cq^{x}(1-bq^{x})M_{n}\!\left(q^{-x}% ;b,c;q\right)-(1-q^{x})(1+bcq^{x})M_{n}\!\left(q^{-x+1};b,c;q\right){}=cq^{x}(% 1-b)M_{n+1}\!\left(q^{-x};bq^{-1},cq;q\right)}}} {\displaystyle cq^x(1-bq^x)\qMeixner{n}@{q^{-x}}{b}{c}{q}-(1-q^x)(1+bcq^x)\qMeixner{n}@{q^{-x+1}}{b}{c}{q} {}=cq^x(1-b)\qMeixner{n+1}@{q^{-x}}{bq^{-1}}{cq}{q} }
[ w ( x ; b , c ; q ) M n ( q - x ; b , c ; q ) ] q - x = 1 1 - q w ( x ; b q - 1 , c q ; q ) M n + 1 ( q - x ; b q - 1 , c q ; q ) 𝑤 𝑥 𝑏 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 superscript 𝑞 𝑥 1 1 𝑞 𝑤 𝑥 𝑏 superscript 𝑞 1 𝑐 𝑞 𝑞 q-Meixner-polynomial-M 𝑛 1 superscript 𝑞 𝑥 𝑏 superscript 𝑞 1 𝑐 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\nabla\left[w(x;b,c;q)M_{n}\!% \left(q^{-x};b,c;q\right)\right]}{\nabla q^{-x}}{}=\frac{1}{1-q}w(x;bq^{-1},cq% ;q)M_{n+1}\!\left(q^{-x};bq^{-1},cq;q\right)}}} {\displaystyle \frac{\nabla\left[w(x;b,c;q)\qMeixner{n}@{q^{-x}}{b}{c}{q}\right]}{\nabla q^{-x}} {}=\frac{1}{1-q}w(x;bq^{-1},cq;q)\qMeixner{n+1}@{q^{-x}}{bq^{-1}}{cq}{q} }

Substitution(s): w ( x ; b , c ; q ) = ( b q ; q ) x ( q , - b c q ; q ) x c x q \binomial x + 12 𝑤 𝑥 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑥 q-Pochhammer-symbol 𝑞 𝑏 𝑐 𝑞 𝑞 𝑥 superscript 𝑐 𝑥 superscript 𝑞 \binomial 𝑥 12 {\displaystyle{\displaystyle{\displaystyle w(x;b,c;q)=\frac{\left(bq;q\right)_% {x}}{\left(q,-bcq;q\right)_{x}}c^{x}q^{\binomial{x+1}{2}}}}}


Rodrigues-type formula

w ( x ; b , c ; q ) M n ( q - x ; b , c ; q ) = ( 1 - q ) n ( q ) n [ w ( x ; b q n , c q - n ; q ) ] 𝑤 𝑥 𝑏 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 superscript 1 𝑞 𝑛 superscript subscript 𝑞 𝑛 delimited-[] 𝑤 𝑥 𝑏 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;b,c;q)M_{n}\!\left(q^{-x};b,c;q% \right)=(1-q)^{n}\left(\nabla_{q}\right)^{n}\left[w(x;bq^{n},cq^{-n};q)\right]% }}} {\displaystyle w(x;b,c;q)\qMeixner{n}@{q^{-x}}{b}{c}{q}=(1-q)^n\left(\nabla_q\right)^n\left[w(x;bq^n,cq^{-n};q)\right] }

Substitution(s): w ( x ; b , c ; q ) = ( b q ; q ) x ( q , - b c q ; q ) x c x q \binomial x + 12 𝑤 𝑥 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑥 q-Pochhammer-symbol 𝑞 𝑏 𝑐 𝑞 𝑞 𝑥 superscript 𝑐 𝑥 superscript 𝑞 \binomial 𝑥 12 {\displaystyle{\displaystyle{\displaystyle w(x;b,c;q)=\frac{\left(bq;q\right)_% {x}}{\left(q,-bcq;q\right)_{x}}c^{x}q^{\binomial{x+1}{2}}}}}


q := q - x assign subscript 𝑞 superscript 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle\nabla_{q}:=\frac{\nabla}{\nabla q^{% -x}}}}} {\displaystyle \nabla_q:=\frac{\nabla}{\nabla q^{-x}} }

Generating functions

1 ( t ; q ) \qHyperrphis 11 @ @ q - x b q q - c - 1 q t = n = 0 M n ( q - x ; b , c ; q ) ( q ; q ) n t n 1 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 11 @ @ superscript 𝑞 𝑥 𝑏 𝑞 𝑞 superscript 𝑐 1 𝑞 𝑡 superscript subscript 𝑛 0 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{\left(t;q\right)_{\infty}}% \,\qHyperrphis{1}{1}@@{q^{-x}}{bq}{q}{-c^{-1}qt}=\sum_{n=0}^{\infty}\frac{M_{n% }\!\left(q^{-x};b,c;q\right)}{\left(q;q\right)_{n}}t^{n}}}} {\displaystyle \frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{1}{1}@@{q^{-x}}{bq}{q}{-c^{-1}qt} =\sum_{n=0}^{\infty}\frac{\qMeixner{n}@{q^{-x}}{b}{c}{q}}{\qPochhammer{q}{q}{n}}t^n }
1 ( t ; q ) \qHyperrphis 11 @ @ - b - 1 c - 1 q - x - c - 1 q q b q t = n = 0 ( b q ; q ) n ( - c - 1 q , q ; q ) n M n ( q - x ; b , c ; q ) t n 1 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 11 @ @ superscript 𝑏 1 superscript 𝑐 1 superscript 𝑞 𝑥 superscript 𝑐 1 𝑞 𝑞 𝑏 𝑞 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑛 q-Pochhammer-symbol superscript 𝑐 1 𝑞 𝑞 𝑞 𝑛 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{\left(t;q\right)_{\infty}}% \,\qHyperrphis{1}{1}@@{-b^{-1}c^{-1}q^{-x}}{-c^{-1}q}{q}{bqt}{}=\sum_{n=0}^{% \infty}\frac{\left(bq;q\right)_{n}}{\left(-c^{-1}q,q;q\right)_{n}}M_{n}\!\left% (q^{-x};b,c;q\right)t^{n}}}} {\displaystyle \frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{1}{1}@@{-b^{-1}c^{-1}q^{-x}}{-c^{-1}q}{q}{bqt} {}=\sum_{n=0}^{\infty}\frac{\qPochhammer{bq}{q}{n}}{\qPochhammer{-c^{-1}q,q}{q}{n}}\qMeixner{n}@{q^{-x}}{b}{c}{q}t^n }

Limit relations

Big q-Jacobi polynomial to q-Meixner polynomial

lim c - P n ( q - x ; a , - a - 1 c d - 1 , c ; q ) = M n ( q - x ; a , d ; q ) subscript 𝑐 big-q-Jacobi-polynomial-P 𝑛 superscript 𝑞 𝑥 𝑎 superscript 𝑎 1 𝑐 superscript 𝑑 1 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑎 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow-\infty}P_{n}\!% \left(q^{-x};a,-a^{-1}cd^{-1},c;q\right)=M_{n}\!\left(q^{-x};a,d;q\right)}}} {\displaystyle \lim_{c\rightarrow -\infty}\bigqJacobi{n}@{q^{-x}}{a}{-a^{-1}cd^{-1}}{c}{q}=\qMeixner{n}@{q^{-x}}{a}{d}{q} }

q-Hahn polynomial to q-Meixner polynomial

lim N Q n ( q - x ; b , - b - 1 c - 1 q - N - 1 , N | q ) = M n ( q - x ; b , c ; q ) subscript 𝑁 subscript 𝑄 𝑛 superscript 𝑞 𝑥 𝑏 superscript 𝑏 1 superscript 𝑐 1 superscript 𝑞 𝑁 1 conditional 𝑁 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{N\rightarrow\infty}Q_{n}(q^{-x% };b,-b^{-1}c^{-1}q^{-N-1},N|q)=M_{n}\!\left(q^{-x};b,c;q\right)}}} {\displaystyle \lim_{N\rightarrow\infty}Q_n(q^{-x};b,-b^{-1}c^{-1}q^{-N-1},N|q)=\qMeixner{n}@{q^{-x}}{b}{c}{q} }

q-Meixner polynomial to q-Laguerre polynomial

lim c M n ( c q α x ; q α , c ; q ) = ( q ; q ) n ( q α + 1 ; q ) n L n ( α ) ( x ; q ) subscript 𝑐 q-Meixner-polynomial-M 𝑛 𝑐 superscript 𝑞 𝛼 𝑥 superscript 𝑞 𝛼 𝑐 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Pochhammer-symbol superscript 𝑞 𝛼 1 𝑞 𝑛 q-Laguerre-polynomial-L 𝛼 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow\infty}M_{n}\!% \left(cq^{\alpha}x;q^{\alpha},c;q\right)=\frac{\left(q;q\right)_{n}}{\left(q^{% \alpha+1};q\right)_{n}}L^{(\alpha)}_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{c\rightarrow\infty}\qMeixner{n}@{cq^{\alpha}x}{q^{\alpha}}{c}{q}= \frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q^{\alpha+1}}{q}{n}}\qLaguerre[\alpha]{n}@{x}{q} }

q-Meixner polynomial to q-Charlier polynomial

M n ( x ; 0 , c ; q ) = C n ( x ; c ; q ) q-Meixner-polynomial-M 𝑛 𝑥 0 𝑐 𝑞 q-Charlier-polynomial-C 𝑛 𝑥 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(x;0,c;q\right)=C_{n}\!% \left(x;c;q\right)}}} {\displaystyle \qMeixner{n}@{x}{0}{c}{q}=\qCharlier{n}@{x}{c}{q} }

q-Meixner polynomial to Al-Salam-Carlitz II polynomial

lim c 0 M n ( x ; - a c - 1 , c ; q ) = ( - 1 a ) n q \binomial n 2 V n ( a ) ( x ; q ) subscript 𝑐 0 q-Meixner-polynomial-M 𝑛 𝑥 𝑎 superscript 𝑐 1 𝑐 𝑞 superscript 1 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow 0}M_{n}\!\left(x;% -ac^{-1},c;q\right)=\left(-\frac{1}{a}\right)^{n}q^{\binomial{n}{2}}V^{(a)}_{n% }\!\left(x;q\right)}}} {\displaystyle \lim_{c\rightarrow 0}\qMeixner{n}@{x}{-ac^{-1}}{c}{q}= \left(-\frac{1}{a}\right)^nq^{\binomial{n}{2}}\AlSalamCarlitzII{a}{n}@{x}{q} }

q-Meixner polynomial to Meixner polynomial

lim q 1 M n ( q - x ; q β - 1 , ( 1 - c ) - 1 c ; q ) = M n ( x ; β , c ) fragments subscript 𝑞 1 superscript Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 superscript 𝑞 𝛽 1 fragments ( 1 c 1 c ; q ) Meixner-polynomial-M 𝑛 𝑥 𝛽 𝑐 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}M_{n}\!\left(q^% {-x};q^{\beta-1},(1-c\right)^{-1}c;q)=M_{n}\!\left(x;\beta,c\right)}}} {\displaystyle \lim_{q\rightarrow 1}\Meixner{n}@{q^{-x}}{q^{\beta-1}}{(1-c}^{-1}c;q)=\Meixner{n}@{x}{\beta}{c} }

Remarks

M n ( q - x ; b , c ; q ) = p n ( - c - 1 q n ; b , b - 1 q - n - x - 1 ; q ) q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑏 𝑐 𝑞 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑐 1 superscript 𝑞 𝑛 𝑏 superscript 𝑏 1 superscript 𝑞 𝑛 𝑥 1 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(q^{-x};b,c;q\right)=p_% {n}\!\left(-c^{-1}q^{n};b,b^{-1}q^{-n-x-1};q\right)}}} {\displaystyle \qMeixner{n}@{q^{-x}}{b}{c}{q}=\littleqJacobi{n}@{-c^{-1}q^n}{b}{b^{-1}q^{-n-x-1}}{q} }
K n qtm ( q - x ; p , N ; q ) = M n ( q - x ; q - N - 1 , - p - 1 ; q ) quantum-q-Krawtchouk-polynomial-K 𝑛 superscript 𝑞 𝑥 𝑝 𝑁 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 superscript 𝑞 𝑁 1 superscript 𝑝 1 𝑞 {\displaystyle{\displaystyle{\displaystyle K^{\mathrm{qtm}}_{n}\!\left(q^{-x};% p,N;q\right)=M_{n}\!\left(q^{-x};q^{-N-1},-p^{-1};q\right)}}} {\displaystyle \qtmqKrawtchouk{n}@{q^{-x}}{p}{N}{q}=\qMeixner{n}@{q^{-x}}{q^{-N-1}}{-p^{-1}}{q} }