Formula:KLS:14.04:16: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
m Move page script moved page Formula:KLS:14.04:16 to F:KLS:14.04:16
 
(No difference)

Latest revision as of 07:36, 22 December 2019


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \delta_q \ctsqHahn{n}@{x}{a}{b}{c}{d}{q} {}=-q^{-\frac{1}{2}n}(1-q^n)(1-abcdq^{n-1})(\expe^{\iunit(\theta+\phi)}-\expe^{-\iunit(\theta+\phi)}) {} \ctsqHahn{n-1}@{x}{aq^{\frac{1}{2}}}{bq^{\frac{1}{2}}}{cq^{\frac{1}{2}}}{dq^{\frac{1}{2}}}{q} }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle x=\cos@{\theta+\phi}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle p_{n}}}  : continuous Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{cos}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.4 of KLS.

URL links

We ask users to provide relevant URL links in this space.