Dual q-Hahn: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

Dual q-Hahn

Basic hypergeometric representation

R n ( μ ( x ) ; γ , δ , N ) q = \qHyperrphis 32 @ @ q - n , q - x , γ δ q x + 1 γ q , q - N q q dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 𝛾 𝑞 superscript 𝑞 𝑁 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);\gamma,\delta,N% \right){q}=\qHyperrphis{3}{2}@@{q^{-n},q^{-x},\gamma\delta q^{x+1}}{\gamma q,q% ^{-N}}{q}{q}}}} {\displaystyle \dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}= \qHyperrphis{3}{2}@@{q^{-n},q^{-x},\gamma\delta q^{x+1}}{\gamma q,q^{-N}}{q}{q} }

Constraint(s): n = 0 , 1 , 2 , , N 𝑛 0 1 2 𝑁 {\displaystyle{\displaystyle{\displaystyle n=0,1,2,\ldots,N}}}


Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Orthogonality relation(s)

x = 0 N ( γ q , γ δ q , q - N ; q ) x ( q , γ δ q N + 2 , δ q ; q ) x ( 1 - γ δ q 2 x + 1 ) ( 1 - γ δ q ) ( - γ q ) x q N x - \binomial x 2 R m ( μ ( x ) ; γ , δ , N ) q R n ( μ ( x ) ; γ , δ , N ) q = ( γ δ q 2 ; q ) N ( δ q ; q ) N ( γ q ) - N ( q , δ - 1 q - N ; q ) n ( γ q , q - N ; q ) n ( γ δ q ) n δ m , n superscript subscript 𝑥 0 𝑁 q-Pochhammer-symbol 𝛾 𝑞 𝛾 𝛿 𝑞 superscript 𝑞 𝑁 𝑞 𝑥 q-Pochhammer-symbol 𝑞 𝛾 𝛿 superscript 𝑞 𝑁 2 𝛿 𝑞 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 2 𝑥 1 1 𝛾 𝛿 𝑞 superscript 𝛾 𝑞 𝑥 superscript 𝑞 𝑁 𝑥 \binomial 𝑥 2 dual-q-Hahn-R 𝑚 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 q-Pochhammer-symbol 𝛾 𝛿 superscript 𝑞 2 𝑞 𝑁 q-Pochhammer-symbol 𝛿 𝑞 𝑞 𝑁 superscript 𝛾 𝑞 𝑁 q-Pochhammer-symbol 𝑞 superscript 𝛿 1 superscript 𝑞 𝑁 𝑞 𝑛 q-Pochhammer-symbol 𝛾 𝑞 superscript 𝑞 𝑁 𝑞 𝑛 superscript 𝛾 𝛿 𝑞 𝑛 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\sum_{x=0}^{N}\frac{\left(\gamma q,% \gamma\delta q,q^{-N};q\right)_{x}}{\left(q,\gamma\delta q^{N+2},\delta q;q% \right)_{x}}\frac{(1-\gamma\delta q^{2x+1})}{(1-\gamma\delta q)(-\gamma q)^{x}% }q^{Nx-\binomial{x}{2}}{}R_{m}\!\left(\mu(x);\gamma,\delta,N\right){q}R_{n}\!% \left(\mu(x);\gamma,\delta,N\right){q}{}=\frac{\left(\gamma\delta q^{2};q% \right)_{N}}{\left(\delta q;q\right)_{N}}(\gamma q)^{-N}\frac{\left(q,\delta^{% -1}q^{-N};q\right)_{n}}{\left(\gamma q,q^{-N};q\right)_{n}}(\gamma\delta q)^{n% }\,\delta_{m,n}}}} {\displaystyle \sum_{x=0}^N\frac{\qPochhammer{\gamma q,\gamma\delta q,q^{-N}}{q}{x}}{\qPochhammer{q,\gamma\delta q^{N+2},\delta q}{q}{x}} \frac{(1-\gamma\delta q^{2x+1})}{(1-\gamma\delta q)(-\gamma q)^x}q^{Nx-\binomial{x}{2}} {} \dualqHahn{m}@{\mu(x)}{\gamma}{\delta}{N}{q}\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} {}=\frac{\qPochhammer{\gamma\delta q^2}{q}{N}}{\qPochhammer{\delta q}{q}{N}}(\gamma q)^{-N} \frac{\qPochhammer{q,\delta^{-1}q^{-N}}{q}{n}}{\qPochhammer{\gamma q,q^{-N}}{q}{n}}(\gamma\delta q)^n\,\Kronecker{m}{n} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Recurrence relation

- ( 1 - q - x ) ( 1 - γ δ q x + 1 ) R n ( μ ( x ) ) q = A n R n + 1 ( μ ( x ) ) q - ( A n + C n ) R n ( μ ( x ) ) q + C n R n - 1 ( μ ( x ) ) q 1 superscript 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 𝑥 1 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 subscript 𝐴 𝑛 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 subscript 𝐴 𝑛 subscript 𝐶 𝑛 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 subscript 𝐶 𝑛 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle-\left(1-q^{-x}\right)\left(1-\gamma% \delta q^{x+1}\right)R_{n}\!\left(\mu(x)\right){q}{}=A_{n}R_{n+1}\!\left(\mu(x% )\right){q}-\left(A_{n}+C_{n}\right)R_{n}\!\left(\mu(x)\right){q}+C_{n}R_{n-1}% \!\left(\mu(x)\right){q}}}} {\displaystyle -\left(1-q^{-x}\right)\left(1-\gamma\delta q^{x+1}\right)\dualqHahn{n}@@{\mu(x)}{\gamma}{\delta}{N}{q} {}=A_n\dualqHahn{n+1}@@{\mu(x)}{\gamma}{\delta}{N}{q}-\left(A_n+C_n\right)\dualqHahn{n}@@{\mu(x)}{\gamma}{\delta}{N}{q}+C_n\dualqHahn{n-1}@@{\mu(x)}{\gamma}{\delta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
C n = γ q ( 1 - q n ) ( δ - q n - N - 1 ) subscript 𝐶 𝑛 𝛾 𝑞 1 superscript 𝑞 𝑛 𝛿 superscript 𝑞 𝑛 𝑁 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=\gamma q\left(1-q^{n}\right)% \left(\delta-q^{n-N-1}\right)}}} &
A n = ( 1 - q n - N ) ( 1 - γ q n + 1 ) subscript 𝐴 𝑛 1 superscript 𝑞 𝑛 𝑁 1 𝛾 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle A_{n}=\left(1-q^{n-N}\right)\left(1% -\gamma q^{n+1}\right)}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


R n ( μ ( x ) ) q := R n ( μ ( x ) ; γ , δ , N ) q assign dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x)\right){q}:=R_{n% }\!\left(\mu(x);\gamma,\delta,N\right){q}}}} {\displaystyle \dualqHahn{n}@@{\mu(x)}{\gamma}{\delta}{N}{q}:=\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Monic recurrence relation

x R ^ n ( x ) = R ^ n + 1 ( x ) + [ 1 + γ δ q - ( A n + C n ) ] R ^ n ( x ) + γ q ( 1 - q n ) ( 1 - γ q n ) ( 1 - q n - N - 1 ) ( δ - q n - N - 1 ) R ^ n - 1 ( x ) 𝑥 dual-q-Hahn-monic-p 𝑛 𝑥 𝛾 𝛿 𝑁 dual-q-Hahn-monic-p 𝑛 1 𝑥 𝛾 𝛿 𝑁 delimited-[] 1 𝛾 𝛿 𝑞 subscript 𝐴 𝑛 subscript 𝐶 𝑛 dual-q-Hahn-monic-p 𝑛 𝑥 𝛾 𝛿 𝑁 𝛾 𝑞 1 superscript 𝑞 𝑛 1 𝛾 superscript 𝑞 𝑛 1 superscript 𝑞 𝑛 𝑁 1 𝛿 superscript 𝑞 𝑛 𝑁 1 dual-q-Hahn-monic-p 𝑛 1 𝑥 𝛾 𝛿 𝑁 {\displaystyle{\displaystyle{\displaystyle x{\widehat{R}}_{n}\!\left(x\right)=% {\widehat{R}}_{n+1}\!\left(x\right)+\left[1+\gamma\delta q-(A_{n}+C_{n})\right% ]{\widehat{R}}_{n}\!\left(x\right){}+\gamma q(1-q^{n})(1-\gamma q^{n}){}(1-q^{% n-N-1})(\delta-q^{n-N-1}){\widehat{R}}_{n-1}\!\left(x\right)}}} {\displaystyle x\monicdualqHahn{n}@@{x}{\gamma}{\delta}{N}=\monicdualqHahn{n+1}@@{x}{\gamma}{\delta}{N}+\left[1+\gamma\delta q-(A_n+C_n)\right]\monicdualqHahn{n}@@{x}{\gamma}{\delta}{N} {}+\gamma q(1-q^n)(1-\gamma q^n) {}(1-q^{n-N-1})(\delta-q^{n-N-1})\monicdualqHahn{n-1}@@{x}{\gamma}{\delta}{N} }

Substitution(s): C n = γ q ( 1 - q n ) ( δ - q n - N - 1 ) subscript 𝐶 𝑛 𝛾 𝑞 1 superscript 𝑞 𝑛 𝛿 superscript 𝑞 𝑛 𝑁 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=\gamma q\left(1-q^{n}\right)% \left(\delta-q^{n-N-1}\right)}}} &
A n = ( 1 - q n - N ) ( 1 - γ q n + 1 ) subscript 𝐴 𝑛 1 superscript 𝑞 𝑛 𝑁 1 𝛾 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle A_{n}=\left(1-q^{n-N}\right)\left(1% -\gamma q^{n+1}\right)}}}


R n ( μ ( x ) ; γ , δ , N ) q = 1 ( γ q , q - N ; q ) n R ^ n ( μ ( x ) ) dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 1 q-Pochhammer-symbol 𝛾 𝑞 superscript 𝑞 𝑁 𝑞 𝑛 dual-q-Hahn-monic-p 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);\gamma,\delta,N% \right){q}=\frac{1}{\left(\gamma q,q^{-N};q\right)_{n}}{\widehat{R}}_{n}\!% \left(\mu(x)\right)}}} {\displaystyle \dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}=\frac{1}{\qPochhammer{\gamma q,q^{-N}}{q}{n}}\monicdualqHahn{n}@@{\mu(x)}{\gamma}{\delta}{N} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


q-Difference equation

q - n ( 1 - q n ) y ( x ) = B ( x ) y ( x + 1 ) - [ B ( x ) + D ( x ) ] y ( x ) + D ( x ) y ( x - 1 ) superscript 𝑞 𝑛 1 superscript 𝑞 𝑛 𝑦 𝑥 𝐵 𝑥 𝑦 𝑥 1 delimited-[] 𝐵 𝑥 𝐷 𝑥 𝑦 𝑥 𝐷 𝑥 𝑦 𝑥 1 {\displaystyle{\displaystyle{\displaystyle q^{-n}(1-q^{n})y(x)=B(x)y(x+1)-% \left[B(x)+D(x)\right]y(x)+D(x)y(x-1)}}} {\displaystyle q^{-n}(1-q^n)y(x)=B(x)y(x+1)-\left[B(x)+D(x)\right]y(x) +D(x)y(x-1) }

Substitution(s): D ( x ) = - γ q x - N ( 1 - q x ) ( 1 - γ δ q x + N + 1 ) ( 1 - δ q x ) ( 1 - γ δ q 2 x ) ( 1 - γ δ q 2 x + 1 ) 𝐷 𝑥 𝛾 superscript 𝑞 𝑥 𝑁 1 superscript 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 𝑥 𝑁 1 1 𝛿 superscript 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 2 𝑥 1 𝛾 𝛿 superscript 𝑞 2 𝑥 1 {\displaystyle{\displaystyle{\displaystyle D(x)=-\frac{\gamma q^{x-N}(1-q^{x})% (1-\gamma\delta q^{x+N+1})(1-\delta q^{x})}{(1-\gamma\delta q^{2x})(1-\gamma% \delta q^{2x+1})}}}} &

B ( x ) = ( 1 - q x - N ) ( 1 - γ q x + 1 ) ( 1 - γ δ q x + 1 ) ( 1 - γ δ q 2 x + 1 ) ( 1 - γ δ q 2 x + 2 ) 𝐵 𝑥 1 superscript 𝑞 𝑥 𝑁 1 𝛾 superscript 𝑞 𝑥 1 1 𝛾 𝛿 superscript 𝑞 𝑥 1 1 𝛾 𝛿 superscript 𝑞 2 𝑥 1 1 𝛾 𝛿 superscript 𝑞 2 𝑥 2 {\displaystyle{\displaystyle{\displaystyle B(x)=\frac{(1-q^{x-N})(1-\gamma q^{% x+1})(1-\gamma\delta q^{x+1})}{(1-\gamma\delta q^{2x+1})(1-\gamma\delta q^{2x+% 2})}}}} &
y ( x ) = R n ( μ ( x ) ; γ , δ , N ) q 𝑦 𝑥 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=R_{n}\!\left(\mu(x);\gamma,% \delta,N\right){q}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Forward shift operator

R n ( μ ( x + 1 ) ; γ , δ , N ) q - R n ( μ ( x ) ; γ , δ , N ) q = q - n - x ( 1 - q n ) ( 1 - γ δ q 2 x + 2 ) ( 1 - γ q ) ( 1 - q - N ) R n - 1 ( μ ( x ) ; γ q , δ , N - 1 ) q dual-q-Hahn-R 𝑛 𝜇 𝑥 1 𝛾 𝛿 𝑁 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 superscript 𝑞 𝑛 𝑥 1 superscript 𝑞 𝑛 1 𝛾 𝛿 superscript 𝑞 2 𝑥 2 1 𝛾 𝑞 1 superscript 𝑞 𝑁 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 𝑞 𝛿 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x+1);\gamma,\delta% ,N\right){q}-R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q}{}=\frac{q^{-n-x}(1-% q^{n})(1-\gamma\delta q^{2x+2})}{(1-\gamma q)(1-q^{-N})}R_{n-1}\!\left(\mu(x);% \gamma q,\delta,N-1\right){q}}}} {\displaystyle \dualqHahn{n}@{\mu(x+1)}{\gamma}{\delta}{N}{q}-\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} {}=\frac{q^{-n-x}(1-q^n)(1-\gamma\delta q^{2x+2})}{(1-\gamma q)(1-q^{-N})} \dualqHahn{n-1}@{\mu(x)}{\gamma q}{\delta}{N-1}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Δ R n ( μ ( x ) ; γ , δ , N ) q Δ μ ( x ) = q - n + 1 ( 1 - q n ) ( 1 - q ) ( 1 - γ q ) ( 1 - q - N ) R n - 1 ( μ ( x ) ; γ q , δ , N - 1 ) q Δ dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 Δ 𝜇 𝑥 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑞 1 𝛾 𝑞 1 superscript 𝑞 𝑁 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 𝑞 𝛿 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\Delta R_{n}\!\left(\mu(x);% \gamma,\delta,N\right){q}}{\Delta\mu(x)}{}=\frac{q^{-n+1}(1-q^{n})}{(1-q)(1-% \gamma q)(1-q^{-N})}R_{n-1}\!\left(\mu(x);\gamma q,\delta,N-1\right){q}}}} {\displaystyle \frac{\Delta \dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}}{\Delta\mu(x)} {}=\frac{q^{-n+1}(1-q^n)}{(1-q)(1-\gamma q)(1-q^{-N})}\dualqHahn{n-1}@{\mu(x)}{\gamma q}{\delta}{N-1}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Backward shift operator

( 1 - γ q x ) ( 1 - γ δ q x ) ( 1 - q x - N - 1 ) R n ( μ ( x ) ; γ , δ , N ) q + γ q x - N - 1 ( 1 - q x ) ( 1 - γ δ q x + N + 1 ) ( 1 - δ q x ) R n ( μ ( x - 1 ) ; γ , δ , N ) q = q x ( 1 - γ ) ( 1 - q - N - 1 ) ( 1 - γ δ q 2 x ) R n + 1 ( μ ( x ) ; γ q - 1 , δ , N + 1 ) q 1 𝛾 superscript 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 𝑁 1 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 𝛾 superscript 𝑞 𝑥 𝑁 1 1 superscript 𝑞 𝑥 1 𝛾 𝛿 superscript 𝑞 𝑥 𝑁 1 1 𝛿 superscript 𝑞 𝑥 dual-q-Hahn-R 𝑛 𝜇 𝑥 1 𝛾 𝛿 𝑁 𝑞 superscript 𝑞 𝑥 1 𝛾 1 superscript 𝑞 𝑁 1 1 𝛾 𝛿 superscript 𝑞 2 𝑥 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 superscript 𝑞 1 𝛿 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle(1-\gamma q^{x})(1-\gamma\delta q^{x% })(1-q^{x-N-1})R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q}{}+\gamma q^{x-N-1% }(1-q^{x})(1-\gamma\delta q^{x+N+1})(1-\delta q^{x})R_{n}\!\left(\mu(x-1);% \gamma,\delta,N\right){q}{}=q^{x}(1-\gamma)(1-q^{-N-1})(1-\gamma\delta q^{2x})% R_{n+1}\!\left(\mu(x);\gamma q^{-1},\delta,N+1\right){q}}}} {\displaystyle (1-\gamma q^x)(1-\gamma\delta q^x)(1-q^{x-N-1})\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} {}+\gamma q^{x-N-1}(1-q^x)(1-\gamma\delta q^{x+N+1})(1-\delta q^x)\dualqHahn{n}@{\mu(x-1)}{\gamma}{\delta}{N}{q} {}=q^x(1-\gamma)(1-q^{-N-1})(1-\gamma\delta q^{2x})\dualqHahn{n+1}@{\mu(x)}{\gamma q^{-1}}{\delta}{N+1}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


[ w ( x ; γ , δ , N | q ) R n ( μ ( x ) ; γ , δ , N ) q ] μ ( x ) = 1 ( 1 - q ) ( 1 - γ δ ) w ( x ; γ q - 1 , δ , N + 1 | q ) R n + 1 ( μ ( x ) ; γ q - 1 , δ , N + 1 ) q 𝑤 𝑥 𝛾 𝛿 conditional 𝑁 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 𝜇 𝑥 1 1 𝑞 1 𝛾 𝛿 𝑤 𝑥 𝛾 superscript 𝑞 1 𝛿 𝑁 conditional 1 𝑞 dual-q-Hahn-R 𝑛 1 𝜇 𝑥 𝛾 superscript 𝑞 1 𝛿 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\nabla\left[w(x;\gamma,\delta,% N|q)R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q}\right]}{\nabla\mu(x)}{}=% \frac{1}{(1-q)(1-\gamma\delta)}w(x;\gamma q^{-1},\delta,N+1|q){}R_{n+1}\!\left% (\mu(x);\gamma q^{-1},\delta,N+1\right){q}}}} {\displaystyle \frac{\nabla\left[w(x;\gamma,\delta,N|q)\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}\right]}{\nabla\mu(x)} {}=\frac{1}{(1-q)(1-\gamma\delta)}w(x;\gamma q^{-1},\delta,N+1|q) {} \dualqHahn{n+1}@{\mu(x)}{\gamma q^{-1}}{\delta}{N+1}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


w ( x ; γ , δ , N | q ) = ( γ q , γ δ q , q - N ; q ) x ( q , γ δ q N + 2 , δ q ; q ) x ( - γ - 1 ) x q N x - \binomial x 2 𝑤 𝑥 𝛾 𝛿 conditional 𝑁 𝑞 q-Pochhammer-symbol 𝛾 𝑞 𝛾 𝛿 𝑞 superscript 𝑞 𝑁 𝑞 𝑥 q-Pochhammer-symbol 𝑞 𝛾 𝛿 superscript 𝑞 𝑁 2 𝛿 𝑞 𝑞 𝑥 superscript superscript 𝛾 1 𝑥 superscript 𝑞 𝑁 𝑥 \binomial 𝑥 2 {\displaystyle{\displaystyle{\displaystyle w(x;\gamma,\delta,N|q)=\frac{\left(% \gamma q,\gamma\delta q,q^{-N};q\right)_{x}}{\left(q,\gamma\delta q^{N+2},% \delta q;q\right)_{x}}(-\gamma^{-1})^{x}q^{Nx-\binomial{x}{2}}}}} {\displaystyle w(x;\gamma,\delta,N|q)=\frac{\qPochhammer{\gamma q,\gamma\delta q,q^{-N}}{q}{x}} {\qPochhammer{q,\gamma\delta q^{N+2},\delta q}{q}{x}}(-\gamma^{-1})^x q^{Nx-\binomial{x}{2}} }

Rodrigues-type formula

w ( x ; γ , δ , N | q ) R n ( μ ( x ) ; γ , δ , N ) q = ( 1 - q ) n ( γ δ q ; q ) n ( μ ) n [ w ( x ; γ q n , δ , N - n | q ) ] 𝑤 𝑥 𝛾 𝛿 conditional 𝑁 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 superscript 1 𝑞 𝑛 q-Pochhammer-symbol 𝛾 𝛿 𝑞 𝑞 𝑛 superscript subscript 𝜇 𝑛 delimited-[] 𝑤 𝑥 𝛾 superscript 𝑞 𝑛 𝛿 𝑁 conditional 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;\gamma,\delta,N|q)R_{n}\!\left(% \mu(x);\gamma,\delta,N\right){q}{}=(1-q)^{n}\left(\gamma\delta q;q\right)_{n}% \left(\nabla_{\mu}\right)^{n}\left[w(x;\gamma q^{n},\delta,N-n|q)\right]}}} {\displaystyle w(x;\gamma,\delta,N|q)\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} {}=(1-q)^n\qPochhammer{\gamma\delta q}{q}{n} \left(\nabla_{\mu}\right)^n\left[w(x;\gamma q^n,\delta,N-n|q)\right] }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


μ := μ ( x ) assign subscript 𝜇 𝜇 𝑥 {\displaystyle{\displaystyle{\displaystyle\nabla_{\mu}:=\frac{\nabla}{\nabla% \mu(x)}}}} {\displaystyle \nabla_{\mu}:=\frac{\nabla}{\nabla\mu(x)} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Generating functions

( q - N t ; q ) N - x \qHyperrphis 21 @ @ q - x , δ - 1 q - x γ q q γ δ q x + 1 t = n = 0 N ( q - N ; q ) n ( q ; q ) n R n ( μ ( x ) ; γ , δ , N ) q t n q-Pochhammer-symbol superscript 𝑞 𝑁 𝑡 𝑞 𝑁 𝑥 \qHyperrphis 21 @ @ superscript 𝑞 𝑥 superscript 𝛿 1 superscript 𝑞 𝑥 𝛾 𝑞 𝑞 𝛾 𝛿 superscript 𝑞 𝑥 1 𝑡 superscript subscript 𝑛 0 𝑁 q-Pochhammer-symbol superscript 𝑞 𝑁 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(q^{-N}t;q\right)_{N-x}\cdot% \qHyperrphis{2}{1}@@{q^{-x},\delta^{-1}q^{-x}}{\gamma q}{q}{\gamma\delta q^{x+% 1}t}{}=\sum_{n=0}^{N}\frac{\left(q^{-N};q\right)_{n}}{\left(q;q\right)_{n}}R_{% n}\!\left(\mu(x);\gamma,\delta,N\right){q}t^{n}}}} {\displaystyle \qPochhammer{q^{-N}t}{q}{N-x}\cdot\qHyperrphis{2}{1}@@{q^{-x},\delta^{-1}q^{-x}}{\gamma q}{q}{\gamma\delta q^{x+1}t} {}=\sum_{n=0}^N\frac{\qPochhammer{q^{-N}}{q}{n}}{\qPochhammer{q}{q}{n}}\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}t^n }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


( γ δ q t ; q ) x \qHyperrphis 21 @ @ q x - N , γ q x + 1 δ - 1 q - N q q - x t = n = 0 N ( q - N , γ q ; q ) n ( δ - 1 q - N , q ; q ) n R n ( μ ( x ) ; γ , δ , N ) q t n q-Pochhammer-symbol 𝛾 𝛿 𝑞 𝑡 𝑞 𝑥 \qHyperrphis 21 @ @ superscript 𝑞 𝑥 𝑁 𝛾 superscript 𝑞 𝑥 1 superscript 𝛿 1 superscript 𝑞 𝑁 𝑞 superscript 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 𝑁 q-Pochhammer-symbol superscript 𝑞 𝑁 𝛾 𝑞 𝑞 𝑛 q-Pochhammer-symbol superscript 𝛿 1 superscript 𝑞 𝑁 𝑞 𝑞 𝑛 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(\gamma\delta qt;q\right)_{x}% \cdot\qHyperrphis{2}{1}@@{q^{x-N},\gamma q^{x+1}}{\delta^{-1}q^{-N}}{q}{q^{-x}% t}{}=\sum_{n=0}^{N}\frac{\left(q^{-N},\gamma q;q\right)_{n}}{\left(\delta^{-1}% q^{-N},q;q\right)_{n}}R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q}t^{n}}}} {\displaystyle \qPochhammer{\gamma\delta qt}{q}{x}\cdot\qHyperrphis{2}{1}@@{q^{x-N},\gamma q^{x+1}}{\delta^{-1}q^{-N}}{q}{q^{-x}t} {}=\sum_{n=0}^N \frac{\qPochhammer{q^{-N},\gamma q}{q}{n}}{\qPochhammer{\delta^{-1}q^{-N},q}{q}{n}}\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}t^n }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Limit relations

q-Racah polynomial to Dual q-Hahn polynomial

R n ( μ ( x ) ; q - N - 1 , 0 , γ , δ | q ) = R n ( μ ( x ) ; γ , δ , N ) q q-Racah-polynomial-R 𝑛 𝜇 𝑥 superscript 𝑞 𝑁 1 0 𝛾 𝛿 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);q^{-N-1},0,% \gamma,\delta\,|\,q\right)=R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q}}}} {\displaystyle \qRacah{n}@{\mu(x)}{q^{-N-1}}{0}{\gamma}{\delta}{q}=\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


R n ( μ ( x ) ; 0 , δ - 1 q - N - 1 , γ , δ | q ) = R n ( μ ( x ) ; γ , δ , N ) q q-Racah-polynomial-R 𝑛 𝜇 𝑥 0 superscript 𝛿 1 superscript 𝑞 𝑁 1 𝛾 𝛿 𝑞 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);0,\delta^{-1}q^% {-N-1},\gamma,\delta\,|\,q\right)=R_{n}\!\left(\mu(x);\gamma,\delta,N\right){q% }}}} {\displaystyle \qRacah{n}@{\mu(x)}{0}{\delta^{-1}q^{-N-1}}{\gamma}{\delta}{q}=\dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


R n ( μ ( x ) ; α , 0 , q - N - 1 , α δ q N + 1 | q ) = R n ( μ ~ ( x ) ; α , δ , N ) q q-Racah-polynomial-R 𝑛 𝜇 𝑥 𝛼 0 superscript 𝑞 𝑁 1 𝛼 𝛿 superscript 𝑞 𝑁 1 𝑞 dual-q-Hahn-R 𝑛 ~ 𝜇 𝑥 𝛼 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);\alpha,0,q^{-N-% 1},\alpha\delta q^{N+1}\,|\,q\right)=R_{n}\!\left({\tilde{\mu}}(x);\alpha,% \delta,N\right){q}}}} {\displaystyle \qRacah{n}@{\mu(x)}{\alpha}{0}{q^{-N-1}}{\alpha\delta q^{N+1}}{q}=\dualqHahn{n}@{{\tilde \mu}(x)}{\alpha}{\delta}{N}{q} }

Substitution(s): μ ~ ( x ) = q - x + α δ q x + 1 ~ 𝜇 𝑥 superscript 𝑞 𝑥 𝛼 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle{\tilde{\mu}}(x)=q^{-x}+\alpha\delta q% ^{x+1}}}} &

μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Dual q-Hahn polynomial to Affine q-Krawtchouk polynomial

R n ( μ ( x ) ; p , 0 , N ) q = K n Aff ( q - x ; p , N ; q ) dual-q-Hahn-R 𝑛 𝜇 𝑥 𝑝 0 𝑁 𝑞 affine-q-Krawtchouk-polynomial-K 𝑛 superscript 𝑞 𝑥 𝑝 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);p,0,N\right){q}% =K^{\mathrm{Aff}}_{n}\!\left(q^{-x};p,N;q\right)}}} {\displaystyle \dualqHahn{n}@{\mu(x)}{p}{0}{N}{q}=\AffqKrawtchouk{n}@{q^{-x}}{p}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Dual q-Hahn polynomial to Dual q-Krawtchouk polynomial

lim γ 0 R n ( μ ( x ) ; γ , c γ - 1 q - N - 1 , N ) q = K n ( λ ( x ) ; c , N | q ) subscript 𝛾 0 dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝑐 superscript 𝛾 1 superscript 𝑞 𝑁 1 𝑁 𝑞 dual-q-Krawtchouk-polynomial-K 𝑛 𝜆 𝑥 𝑐 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{\gamma\rightarrow 0}R_{n}\!% \left(\mu(x);\gamma,c\gamma^{-1}q^{-N-1},N\right){q}=K_{n}\!\left(\lambda(x);c% ,N|q\right)}}} {\displaystyle \lim_{\gamma\rightarrow 0} \dualqHahn{n}@{\mu(x)}{\gamma}{c\gamma^{-1}q^{-N-1}}{N}{q}=\dualqKrawtchouk{n}@{\lambda(x)}{c}{N}{q} }

Substitution(s): λ ( x ) = x ( x + γ + δ + 1 ) 𝜆 𝑥 𝑥 𝑥 𝛾 𝛿 1 {\displaystyle{\displaystyle{\displaystyle\lambda(x)=x(x+\gamma+\delta+1)}}} &

μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Dual q-Hahn polynomial to Dual Hahn polynomial

lim q 1 R n ( μ ( x ) ; q γ , q δ , N ) q = R n ( λ ( x ) ; γ , δ , N ) subscript 𝑞 1 dual-q-Hahn-R 𝑛 𝜇 𝑥 superscript 𝑞 𝛾 superscript 𝑞 𝛿 𝑁 𝑞 dual-Hahn-R 𝑛 𝜆 𝑥 𝛾 𝛿 𝑁 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}R_{n}\!\left(% \mu(x);q^{\gamma},q^{\delta},N\right){q}=R_{n}\!\left(\lambda(x);\gamma,\delta% ,N\right)}}} {\displaystyle \lim_{q\rightarrow 1}\dualqHahn{n}@{\mu(x)}{q^{\gamma}}{q^{\delta}}{N}{q}=\dualHahn{n}@{\lambda(x)}{\gamma}{\delta}{N} }

Substitution(s): λ ( x ) = x ( x + γ + δ + 1 ) 𝜆 𝑥 𝑥 𝑥 𝛾 𝛿 1 {\displaystyle{\displaystyle{\displaystyle\lambda(x)=x(x+\gamma+\delta+1)}}} &

μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Remark

Q n ( q - x ; α , β , N ; q ) = R x ( μ ( n ) ; α , β , N ) q q-Hahn-polynomial-Q 𝑛 superscript 𝑞 𝑥 𝛼 𝛽 𝑁 𝑞 dual-q-Hahn-R 𝑥 𝜇 𝑛 𝛼 𝛽 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle Q_{n}\!\left(q^{-x};\alpha,\beta,N;% q\right)=R_{x}\!\left(\mu(n);\alpha,\beta,N\right){q}}}} {\displaystyle \qHahn{n}@{q^{-x}}{\alpha}{\beta}{N}{q}=\dualqHahn{x}@{\mu(n)}{\alpha}{\beta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


R n ( μ ( x ) ; γ , δ , N ) q = Q x ( q - n ; γ , δ , N ; q ) dual-q-Hahn-R 𝑛 𝜇 𝑥 𝛾 𝛿 𝑁 𝑞 q-Hahn-polynomial-Q 𝑥 superscript 𝑞 𝑛 𝛾 𝛿 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);\gamma,\delta,N% \right){q}=Q_{x}\!\left(q^{-n};\gamma,\delta,N;q\right)}}} {\displaystyle \dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}=\qHahn{x}@{q^{-n}}{\gamma}{\delta}{N}{q} }

Substitution(s): μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}} &
μ ( x ) := q - x + γ δ q x + 1 assign 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x):=q^{-x}+\gamma\delta q^{x+1}}}} &
μ ( x ) = q - x + γ δ q x + 1 = q - x + q x + γ + δ + 1 = q - x + γ δ q x + 1 𝜇 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 superscript 𝑞 𝑥 𝛾 𝛿 1 superscript 𝑞 𝑥 𝛾 𝛿 superscript 𝑞 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\mu(x)=q^{-x}+\gamma\delta q^{x+1}=q% ^{-x}+q^{x+\gamma+\delta+1}=q^{-x}+\gamma\delta q^{x+1}}}} &

μ ( n ) = q - n + α β q n + 1 𝜇 𝑛 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\mu(n)=q^{-n}+\alpha\beta q^{n+1}}}}


Koornwinder Addendum: Dual q-Hahn

Symmetry

R n ( x ; γ , δ , N ) q = ( δ - 1 q - N ; q ) n ( γ q ; q ) n ( γ δ q N + 1 ) n R n ( γ - 1 δ - 1 q - 1 - N x ; δ - 1 q - N - 1 , γ - 1 q - N - 1 , N ) q dual-q-Hahn-R 𝑛 𝑥 𝛾 𝛿 𝑁 𝑞 q-Pochhammer-symbol superscript 𝛿 1 superscript 𝑞 𝑁 𝑞 𝑛 q-Pochhammer-symbol 𝛾 𝑞 𝑞 𝑛 superscript 𝛾 𝛿 superscript 𝑞 𝑁 1 𝑛 dual-q-Hahn-R 𝑛 superscript 𝛾 1 superscript 𝛿 1 superscript 𝑞 1 𝑁 𝑥 superscript 𝛿 1 superscript 𝑞 𝑁 1 superscript 𝛾 1 superscript 𝑞 𝑁 1 𝑁 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(x;\gamma,\delta,N% \right){q}=\frac{\left(\delta^{-1}q^{-N};q\right)_{n}}{\left(\gamma q;q\right)% _{n}}\big{(}\gamma\delta q^{N+1}\big{)}^{n}R_{n}\!\left(\gamma^{-1}\delta^{-1}% q^{-1-N}x;\delta^{-1}q^{-N-1},\gamma^{-1}q^{-N-1},N\right){q}}}} {\displaystyle \dualqHahn{n}@{x}{\gamma}{\delta}{N }{ q} =\frac{\qPochhammer{\delta^{-1}q^{-N}}{q}{n}}{\qPochhammer{\gamma q}{q}{n}} \big(\gamma\delta q^{N+1}\big)^n \dualqHahn{n}@{\gamma^{-1}\delta^{-1}q^{-1-N} x}{\delta^{-1}q^{-N-1}}{\gamma^{-1}q^{-N-1}}{N }{ q} }