Stieltjes-Wigert: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

Stieltjes-Wigert

Basic hypergeometric representation

S n ( x ; q ) = 1 ( q ; q ) n \qHyperrphis 11 @ @ q - n 0 q - q n + 1 x Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 1 q-Pochhammer-symbol 𝑞 𝑞 𝑛 \qHyperrphis 11 @ @ superscript 𝑞 𝑛 0 𝑞 superscript 𝑞 𝑛 1 𝑥 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x;q\right)=\frac{1}{% \left(q;q\right)_{n}}\,\qHyperrphis{1}{1}@@{q^{-n}}{0}{q}{-q^{n+1}x}}}} {\displaystyle \StieltjesWigert{n}@{x}{q}=\frac{1}{\qPochhammer{q}{q}{n}}\,\qHyperrphis{1}{1}@@{q^{-n}}{0}{q}{-q^{n+1}x} }

Orthogonality relation(s)

0 S m ( x ; q ) S n ( x ; q ) ( - x , - q x - 1 ; q ) 𝑑 x = - ln q q n ( q ; q ) ( q ; q ) n δ m , n superscript subscript 0 Stieltjes-Wigert-polynomial-S 𝑚 𝑥 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑞 superscript 𝑥 1 𝑞 differential-d 𝑥 𝑞 superscript 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\int_{0}^{\infty}\frac{S_{m}\!\left(% x;q\right)S_{n}\!\left(x;q\right)}{\left(-x,-qx^{-1};q\right)_{\infty}}\,dx=-% \frac{\ln q}{q^{n}}\frac{\left(q;q\right)_{\infty}}{\left(q;q\right)_{n}}\,% \delta_{m,n}}}} {\displaystyle \int_{0}^{\infty}\frac{\StieltjesWigert{m}@{x}{q}\StieltjesWigert{n}@{x}{q}}{\qPochhammer{-x,-qx^{-1}}{q}{\infty}}\,dx =-\frac{\ln@@{q}}{q^n}\frac{\qPochhammer{q}{q}{\infty}}{\qPochhammer{q}{q}{n}}\,\Kronecker{m}{n} }

Recurrence relation

- q 2 n + 1 x S n ( x ; q ) = ( 1 - q n + 1 ) S n + 1 ( x ; q ) - [ 1 + q - q n + 1 ] S n ( x ; q ) + q S n - 1 ( x ; q ) superscript 𝑞 2 𝑛 1 𝑥 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 1 superscript 𝑞 𝑛 1 Stieltjes-Wigert-polynomial-S 𝑛 1 𝑥 𝑞 delimited-[] 1 𝑞 superscript 𝑞 𝑛 1 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle-q^{2n+1}xS_{n}\!\left(x;q\right){}=% (1-q^{n+1})S_{n+1}\!\left(x;q\right)-[1+q-q^{n+1}]S_{n}\!\left(x;q\right)+qS_{% n-1}\!\left(x;q\right)}}} {\displaystyle -q^{2n+1}x\StieltjesWigert{n}@{x}{q} {}=(1-q^{n+1})\StieltjesWigert{n+1}@{x}{q}-[1+q-q^{n+1}]\StieltjesWigert{n}@{x}{q}+q\StieltjesWigert{n-1}@{x}{q} }

Monic recurrence relation

x S ^ n ( x ) = S ^ n + 1 ( x ) + q - 2 n - 1 [ 1 + q - q n + 1 ] S ^ n ( x ) + q - 4 n + 1 ( 1 - q n ) S ^ n - 1 ( x ) 𝑥 Stieltjes-Wigert-polynomial-monic-p 𝑛 𝑥 𝑞 Stieltjes-Wigert-polynomial-monic-p 𝑛 1 𝑥 𝑞 superscript 𝑞 2 𝑛 1 delimited-[] 1 𝑞 superscript 𝑞 𝑛 1 Stieltjes-Wigert-polynomial-monic-p 𝑛 𝑥 𝑞 superscript 𝑞 4 𝑛 1 1 superscript 𝑞 𝑛 Stieltjes-Wigert-polynomial-monic-p 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{S}}_{n}\!\left(x\right)=% {\widehat{S}}_{n+1}\!\left(x\right)+q^{-2n-1}\left[1+q-q^{n+1}\right]{\widehat% {S}}_{n}\!\left(x\right){}+q^{-4n+1}(1-q^{n}){\widehat{S}}_{n-1}\!\left(x% \right)}}} {\displaystyle x\monicStieltjesWigert{n}@@{x}{q}=\monicStieltjesWigert{n+1}@@{x}{q}+q^{-2n-1}\left[1+q-q^{n+1}\right]\monicStieltjesWigert{n}@@{x}{q} {}+q^{-4n+1}(1-q^n)\monicStieltjesWigert{n-1}@@{x}{q} }
S n ( x ; q ) = ( - 1 ) n q n 2 ( q ; q ) n S ^ n ( x ) Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 superscript 1 𝑛 superscript 𝑞 superscript 𝑛 2 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Stieltjes-Wigert-polynomial-monic-p 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x;q\right)=\frac{(-1)^% {n}q^{n^{2}}}{\left(q;q\right)_{n}}{\widehat{S}}_{n}\!\left(x\right)}}} {\displaystyle \StieltjesWigert{n}@{x}{q}=\frac{(-1)^nq^{n^2}}{\qPochhammer{q}{q}{n}}\monicStieltjesWigert{n}@@{x}{q} }

q-Difference equation

- x ( 1 - q n ) y ( x ) = x y ( q x ) - ( x + 1 ) y ( x ) + y ( q - 1 x ) 𝑥 1 superscript 𝑞 𝑛 𝑦 𝑥 𝑥 𝑦 𝑞 𝑥 𝑥 1 𝑦 𝑥 𝑦 superscript 𝑞 1 𝑥 {\displaystyle{\displaystyle{\displaystyle-x(1-q^{n})y(x)=xy(qx)-(x+1)y(x)+y(q% ^{-1}x)}}} {\displaystyle -x(1-q^n)y(x)=xy(qx)-(x+1)y(x)+y(q^{-1}x) }

Substitution(s): y ( x ) = S n ( x ; q ) 𝑦 𝑥 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=S_{n}\!\left(x;q\right)}}}


Forward shift operator

S n ( x ; q ) - S n ( q x ; q ) = - q x S n - 1 ( q 2 x ; q ) Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑞 𝑥 𝑞 𝑞 𝑥 Stieltjes-Wigert-polynomial-S 𝑛 1 superscript 𝑞 2 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x;q\right)-S_{n}\!% \left(qx;q\right)=-qxS_{n-1}\!\left(q^{2}x;q\right)}}} {\displaystyle \StieltjesWigert{n}@{x}{q}-\StieltjesWigert{n}@{qx}{q}=-qx\StieltjesWigert{n-1}@{q^2x}{q} }
𝒟 q S n ( x ; q ) = - q 1 - q S n - 1 ( q 2 x ; q ) q-derivative 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 𝑞 1 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 1 superscript 𝑞 2 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}S_{n}\!\left(x;q% \right)=-\frac{q}{1-q}S_{n-1}\!\left(q^{2}x;q\right)}}} {\displaystyle \qderiv{q}\StieltjesWigert{n}@{x}{q}=-\frac{q}{1-q}\StieltjesWigert{n-1}@{q^2x}{q} }

Backward shift operator

S n ( x ; q ) - x S n ( q x ; q ) = ( 1 - q n + 1 ) S n + 1 ( q - 1 x ; q ) Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 𝑥 Stieltjes-Wigert-polynomial-S 𝑛 𝑞 𝑥 𝑞 1 superscript 𝑞 𝑛 1 Stieltjes-Wigert-polynomial-S 𝑛 1 superscript 𝑞 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x;q\right)-xS_{n}\!% \left(qx;q\right)=(1-q^{n+1})S_{n+1}\!\left(q^{-1}x;q\right)}}} {\displaystyle \StieltjesWigert{n}@{x}{q}-x\StieltjesWigert{n}@{qx}{q}=(1-q^{n+1})\StieltjesWigert{n+1}@{q^{-1}x}{q} }
𝒟 q [ w ( x ; q ) S n ( x ; q ) ] = 1 - q n + 1 1 - q q - 1 w ( q - 1 x ; q ) S n + 1 ( q - 1 x ; q ) q-derivative 𝑞 𝑤 𝑥 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 1 superscript 𝑞 𝑛 1 1 𝑞 superscript 𝑞 1 𝑤 superscript 𝑞 1 𝑥 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 1 superscript 𝑞 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}\left[w(x;q)S_{n}\!% \left(x;q\right)\right]=\frac{1-q^{n+1}}{1-q}q^{-1}w(q^{-1}x;q)S_{n+1}\!\left(% q^{-1}x;q\right)}}} {\displaystyle \qderiv{q}\left[w(x;q)\StieltjesWigert{n}@{x}{q}\right]=\frac{1-q^{n+1}}{1-q}q^{-1}w(q^{-1}x;q)\StieltjesWigert{n+1}@{q^{-1}x}{q} }

Substitution(s): w ( x ; q ) = 1 ( - x , - q x - 1 ; q ) 𝑤 𝑥 𝑞 1 q-Pochhammer-symbol 𝑥 𝑞 superscript 𝑥 1 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;q)=\frac{1}{\left(-x,-qx^{-1};q% \right)_{\infty}}}}} &
w ( x ) = γ π exp ( - γ 2 ln 2 x ) , x > 0 , with γ 2 = - 1 2 ln q = γ π x - 1 2 exp ( - γ 2 ln 2 x ) , x > 0 w i t h γ 2 formulae-sequence formulae-sequence 𝑤 𝑥 𝛾 superscript 𝛾 2 2 𝑥 formulae-sequence 𝑥 0 with superscript 𝛾 2 1 2 𝑞 𝛾 superscript 𝑥 1 2 superscript 𝛾 2 2 𝑥 𝑥 0 w i t h superscript 𝛾 2 {\displaystyle{\displaystyle{\displaystyle w(x)=\frac{\gamma}{\sqrt{\pi}}\exp% \left(-\gamma^{2}{\ln^{2}}x\right),\quad x>0,\quad\textrm{with}\quad\gamma^{2}% =-\frac{1}{2\ln q}=\frac{\gamma}{\sqrt{\pi}}x^{-\frac{1}{2}}\exp\left(-\gamma^% {2}{\ln^{2}}x\right),x>0{\rm with}\gamma^{2}}}}


Rodrigues-type formula

w ( x ; q ) S n ( x ; q ) = q n ( 1 - q ) n ( q ; q ) n ( ( 𝒟 q ) n w ) ( q n x ; q ) 𝑤 𝑥 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 superscript 𝑞 𝑛 superscript 1 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript q-derivative 𝑞 𝑛 𝑤 superscript 𝑞 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;q)S_{n}\!\left(x;q\right)=\frac% {q^{n}(1-q)^{n}}{\left(q;q\right)_{n}}\left(\left(\mathcal{D}_{q}\right)^{n}w% \right)(q^{n}x;q)}}} {\displaystyle w(x;q)\StieltjesWigert{n}@{x}{q}=\frac{q^n(1-q)^n}{\qPochhammer{q}{q}{n}}\left(\left(\qderiv{q}\right)^n w\right)(q^nx;q) }

Substitution(s): w ( x ; q ) = 1 ( - x , - q x - 1 ; q ) 𝑤 𝑥 𝑞 1 q-Pochhammer-symbol 𝑥 𝑞 superscript 𝑥 1 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;q)=\frac{1}{\left(-x,-qx^{-1};q% \right)_{\infty}}}}} &
w ( x ) = γ π exp ( - γ 2 ln 2 x ) , x > 0 , with γ 2 = - 1 2 ln q = γ π x - 1 2 exp ( - γ 2 ln 2 x ) , x > 0 w i t h γ 2 formulae-sequence formulae-sequence 𝑤 𝑥 𝛾 superscript 𝛾 2 2 𝑥 formulae-sequence 𝑥 0 with superscript 𝛾 2 1 2 𝑞 𝛾 superscript 𝑥 1 2 superscript 𝛾 2 2 𝑥 𝑥 0 w i t h superscript 𝛾 2 {\displaystyle{\displaystyle{\displaystyle w(x)=\frac{\gamma}{\sqrt{\pi}}\exp% \left(-\gamma^{2}{\ln^{2}}x\right),\quad x>0,\quad\textrm{with}\quad\gamma^{2}% =-\frac{1}{2\ln q}=\frac{\gamma}{\sqrt{\pi}}x^{-\frac{1}{2}}\exp\left(-\gamma^% {2}{\ln^{2}}x\right),x>0{\rm with}\gamma^{2}}}}


Generating functions

1 ( t ; q ) \qHyperrphis 01 @ @ - 0 q - q x t = n = 0 S n ( x ; q ) t n 1 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 01 @ @ 0 𝑞 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{\left(t;q\right)_{\infty}}% \,\qHyperrphis{0}{1}@@{-}{0}{q}{-qxt}=\sum_{n=0}^{\infty}S_{n}\!\left(x;q% \right)t^{n}}}} {\displaystyle \frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{0}{1}@@{-}{0}{q}{-qxt}= \sum_{n=0}^{\infty}\StieltjesWigert{n}@{x}{q}t^n }
( t ; q ) \qHyperrphis 02 @ @ - 0 , t q - q x t = n = 0 ( - 1 ) n q \binomial n 2 S n ( x ; q ) t n q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 02 @ @ 0 𝑡 𝑞 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 \binomial 𝑛 2 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(t;q\right)_{\infty}\cdot% \qHyperrphis{0}{2}@@{-}{0,t}{q}{-qxt}=\sum_{n=0}^{\infty}(-1)^{n}q^{\binomial{% n}{2}}S_{n}\!\left(x;q\right)t^{n}}}} {\displaystyle \qPochhammer{t}{q}{\infty}\cdot\qHyperrphis{0}{2}@@{-}{0,t}{q}{-qxt}= \sum_{n=0}^{\infty}(-1)^nq^{\binomial{n}{2}}\StieltjesWigert{n}@{x}{q}t^n }
( γ t ; q ) ( t ; q ) \qHyperrphis 12 @ @ γ 0 , γ t q - q x t = n = 0 ( γ ; q ) n S n ( x ; q ) t n q-Pochhammer-symbol 𝛾 𝑡 𝑞 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 12 @ @ 𝛾 0 𝛾 𝑡 𝑞 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝛾 𝑞 𝑛 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{\left(\gamma t;q\right)_{% \infty}}{\left(t;q\right)_{\infty}}\,\qHyperrphis{1}{2}@@{\gamma}{0,\gamma t}{% q}{-qxt}=\sum_{n=0}^{\infty}\left(\gamma;q\right)_{n}S_{n}\!\left(x;q\right)t^% {n}}}} {\displaystyle \frac{\qPochhammer{\gamma t}{q}{\infty}}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{1}{2}@@{\gamma}{0,\gamma t}{q}{-qxt} =\sum_{n=0}^{\infty}\qPochhammer{\gamma}{q}{n}\StieltjesWigert{n}@{x}{q}t^n }

Constraint(s): γ 𝛾 {\displaystyle{\displaystyle{\displaystyle\gamma}}} arbitrary


Limit relations

q-Laguerre polynomial to Stieltjes-Wigert polynomial

lim α L n ( α ) ( x q - α ; q ) = S n ( x ; q ) subscript 𝛼 q-Laguerre-polynomial-L 𝛼 𝑛 𝑥 superscript 𝑞 𝛼 𝑞 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{\alpha\rightarrow\infty}L^{(% \alpha)}_{n}\!\left(xq^{-\alpha};q\right)=S_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{\alpha\rightarrow\infty}\qLaguerre[\alpha]{n}@{xq^{-\alpha}}{q}=\StieltjesWigert{n}@{x}{q} }

q-Bessel polynomial to Stieltjes-Wigert polynomial

lim a y n ( a - 1 x ; a ; q ) = ( q ; q ) n S n ( x ; q ) subscript 𝑎 q-Bessel-polynomial-y 𝑛 superscript 𝑎 1 𝑥 𝑎 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow\infty}y_{n}\!% \left(a^{-1}x;a;q\right)=\left(q;q\right)_{n}S_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\rightarrow\infty}\qBesselPoly{n}@{a^{-1}x}{a}{q}=\qPochhammer{q}{q}{n}\StieltjesWigert{n}@{x}{q} }

q-Charlier polynomial to Stieltjes-Wigert polynomial

lim a C n ( a x ; a ; q ) = ( q ; q ) n S n ( x ; q ) subscript 𝑎 q-Charlier-polynomial-C 𝑛 𝑎 𝑥 𝑎 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow\infty}C_{n}\!% \left(ax;a;q\right)=\left(q;q\right)_{n}S_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\rightarrow\infty}\qCharlier{n}@{ax}{a}{q}=\qPochhammer{q}{q}{n}\StieltjesWigert{n}@{x}{q} }

Stieltjes-Wigert polynomial to Hermite polynomial

lim q 1 ( q ; q ) n S n ( q - 1 x 2 ( 1 - q ) + 1 ; q ) ( 1 - q 2 ) n 2 = ( - 1 ) n H n ( x ) subscript 𝑞 1 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Stieltjes-Wigert-polynomial-S 𝑛 superscript 𝑞 1 𝑥 2 1 𝑞 1 𝑞 superscript 1 𝑞 2 𝑛 2 superscript 1 𝑛 Hermite-polynomial-H 𝑛 𝑥 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}\frac{\left(q;q% \right)_{n}S_{n}\!\left(q^{-1}x\sqrt{2(1-q)}+1;q\right)}{\left(\frac{1-q}{2}% \right)^{\frac{n}{2}}}=(-1)^{n}H_{n}\left(x\right)}}} {\displaystyle \lim_{q\rightarrow 1}\frac{\qPochhammer{q}{q}{n}\StieltjesWigert{n}@{q^{-1}x\sqrt{2(1-q)}+1}{q}} {\left(\frac{1-q}{2}\right)^{\frac{n}{2}}}=(-1)^n\Hermite{n}@{x} }

Remark

Koornwinder Addendum: Stieltjes-Wigert

An alternative weight function

w ( x ) = - 1 2 ln q 𝑤 𝑥 1 2 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x)=-\frac{1}{2\ln q}}}} {\displaystyle w(x) =- \frac1{2\ln@@{q}} }

Substitution(s): w ( x ; q ) = 1 ( - x , - q x - 1 ; q ) 𝑤 𝑥 𝑞 1 q-Pochhammer-symbol 𝑥 𝑞 superscript 𝑥 1 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;q)=\frac{1}{\left(-x,-qx^{-1};q% \right)_{\infty}}}}} &
w ( x ) = γ π exp ( - γ 2 ln 2 x ) , x > 0 , with γ 2 = - 1 2 ln q = γ π x - 1 2 exp ( - γ 2 ln 2 x ) , x > 0 w i t h γ 2 formulae-sequence formulae-sequence 𝑤 𝑥 𝛾 superscript 𝛾 2 2 𝑥 formulae-sequence 𝑥 0 with superscript 𝛾 2 1 2 𝑞 𝛾 superscript 𝑥 1 2 superscript 𝛾 2 2 𝑥 𝑥 0 w i t h superscript 𝛾 2 {\displaystyle{\displaystyle{\displaystyle w(x)=\frac{\gamma}{\sqrt{\pi}}\exp% \left(-\gamma^{2}{\ln^{2}}x\right),\quad x>0,\quad\textrm{with}\quad\gamma^{2}% =-\frac{1}{2\ln q}=\frac{\gamma}{\sqrt{\pi}}x^{-\frac{1}{2}}\exp\left(-\gamma^% {2}{\ln^{2}}x\right),x>0{\rm with}\gamma^{2}}}}