Definition:poly: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
m Move page script moved page Definition:poly to D:poly
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 07:49, 22 December 2019

The LaTeX DLMF and DRMF macro \poly represents the semantic polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\poly{p}{n} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \poly{p}{n}}}
\poly{p}{n}@{x} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \poly{p}{n}@{x}}}

These are defined by Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \pseudoJacobi{n}@{x}{\nu}{N}:=\frac{(-2i)^n\pochhammer{-N+i\nu}{n}}{\pochhammer{n-2N-1}{n}}\,\HyperpFq{2}{1}@@{-n,n-2N-1}{-N+i\nu}{\frac{1-ix}{2}} }


Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {p}_{n}}}  : polynomial : http://drmf.wmflabs.org/wiki/Definition:poly
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle P_{n}}}  : pseudo Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:pseudoJacobi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a)_n}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{p}F_{q}}}}  : generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1