drmf-kls9.ocd: Difference between revisions
imported>Admin |
imported>Admin |
||
(One intermediate revision by the same user not shown) | |||
Line 23: | Line 23: | ||
=== Section 9.4 [[Continuous Hahn|Continuous Hahn]] === | === Section 9.4 [[Continuous Hahn|Continuous Hahn]] === | ||
==== [[Definition:normctsHahnptilde|normctsHahnptilde]] ==== | |||
<math display=block> | |||
\normctsHahnptilde{n}@@{x}{a}{b}{c}{d}:=\normctsHahnptilde{n}@{x}{a}{b}{c}{d}=\frac{n!}{i^n\pochhammer{a+c}{n}\pochhammer{a+d}{n}}\ctsHahn{n}@{x}{a}{b}{c}{d}. | |||
</math><ref>[[Formula:KLS:09.04:04]]</ref> | |||
=== Section 9.5 [[Hahn|Hahn]] === | === Section 9.5 [[Hahn|Hahn]] === | ||
=== Section 9.6 [[Dual Hahn|Dual Hahn]] === | === Section 9.6 [[Dual Hahn|Dual Hahn]] === | ||
Latest revision as of 18:43, 13 July 2017
Symbols in KLS Chapter 9
Section 9.1 Wilson
normWilsonWtilde
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normWilsonWtilde{n}@{x^2}{a}{b}{c}{d}:=\frac{\Wilson{n}@{x^2}{a}{b}{c}{d}}{\pochhammer{a+b}{n}\pochhammer{a+c}{n}\pochhammer{a+d}{n}} } [1]
monicWilson
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wilson{n}@{x^2}{a}{b}{c}{d}=:(-1)^n\pochhammer{n+a+b+c+d-1}{n}\monicWilson{n}@@{x^2}{a}{b}{c}{d}. } [2]
Section 9.2 Racah
monicRacah
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Racah{n}@{\lambda(x)}{\alpha}{\beta}{\gamma}{\delta}=: \frac{\pochhammer{n+\alpha+\beta+1}{n}}{\pochhammer{\alpha+1}{n}\pochhammer{\beta+\delta+1}{n}\pochhammer{\gamma+1}{n}}\monicRacah{n}@@{\lambda(x)}{\alpha}{\beta}{\gamma}{\delta} } [3]
Section 9.3 Continuous dual Hahn
Section 9.4 Continuous Hahn
normctsHahnptilde
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normctsHahnptilde{n}@@{x}{a}{b}{c}{d}:=\normctsHahnptilde{n}@{x}{a}{b}{c}{d}=\frac{n!}{i^n\pochhammer{a+c}{n}\pochhammer{a+d}{n}}\ctsHahn{n}@{x}{a}{b}{c}{d}. } [4]