Formula:KLS:14.19:12: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
m Move page script moved page Formula:KLS:14.19:12 to F:KLS:14.19:12
 
(No difference)

Latest revision as of 07:38, 22 December 2019


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (1-q)^2D_q\left[{\tilde w}(x;q^{\alpha+1}|q)D_qy(x)\right] +4q^{-n+1}(1-q^n){\tilde w}(x;q^{\alpha}|q)y(x)=0 }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {\tilde w}(x;q^{\alpha}|q):=\frac{w(x;q^{\alpha}|q)}{\sqrt{1-x^2}}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle y(x)=\ctsqLaguerre{\alpha}{n}@{x}{q}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle w(x):=w(x;q^{\alpha}|q) =\left|\frac{\qPochhammer{\expe^{2\iunit\theta}}{q}{\infty}} {\qPochhammer{q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{\iunit\theta} q^{\frac{1}{2}\alpha+\frac{3}{4}}\expe^{\iunit\theta}}{q}{\infty}}\right|^2 =\left|\frac{\qPochhammer{\expe^{\iunit\theta},-\expe^{\iunit\theta}}{q^{\frac{1}{2}}}{\infty}} {\qPochhammer{q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{\iunit\theta}}{q^{\frac{1}{2}}}{\infty}}\right|^2 =\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}})} {h(x,q^{\frac{1}{2}\alpha+\frac{1}{4}})h(x,q^{\frac{1}{2}\alpha+\frac{3}{4}})}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}\left(1-2\alpha xq^k+\alpha^2q^{2k}\right) =\qPochhammer{\alpha\expe^{\iunit\theta},\alpha\expe^{-\iunit\theta}}{q}{\infty}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle x=\cos@@{\theta}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle P^{(n)}_{\alpha}}}  : continuous Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Laguerre polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqLaguerre
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a;q)_n}}  : Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Pi}}  : product : http://drmf.wmflabs.org/wiki/Definition:prod
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{cos}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.19 of KLS.

URL links

We ask users to provide relevant URL links in this space.