drmf-kls9.ocd: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
Line 24: Line 24:
=== Section 9.4 [[Continuous Hahn|Continuous Hahn]] ===
=== Section 9.4 [[Continuous Hahn|Continuous Hahn]] ===
==== [[Definition:normctsHahnptilde|normctsHahnptilde]] ====
==== [[Definition:normctsHahnptilde|normctsHahnptilde]] ====
<ref>[[Formula:KLS:09.04:04]]</ref>
<math display=block>
\normctsHahnptilde{n}@@{x}{a}{b}{c}{d}:=\normctsHahnptilde{n}@{x}{a}{b}{c}{d}=\frac{n!}{i^n\pochhammer{a+c}{n}\pochhammer{a+d}{n}}\ctsHahn{n}@{x}{a}{b}{c}{d}.
</math><ref>[[Formula:KLS:09.04:04]]</ref>
 
=== Section 9.5 [[Hahn|Hahn]] ===
=== Section 9.5 [[Hahn|Hahn]] ===



Latest revision as of 18:43, 13 July 2017

Symbols in KLS Chapter 9

Section 9.1 Wilson

normWilsonWtilde

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normWilsonWtilde{n}@{x^2}{a}{b}{c}{d}:=\frac{\Wilson{n}@{x^2}{a}{b}{c}{d}}{\pochhammer{a+b}{n}\pochhammer{a+c}{n}\pochhammer{a+d}{n}} } [1]

monicWilson

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wilson{n}@{x^2}{a}{b}{c}{d}=:(-1)^n\pochhammer{n+a+b+c+d-1}{n}\monicWilson{n}@@{x^2}{a}{b}{c}{d}. } [2]

Section 9.2 Racah

monicRacah

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Racah{n}@{\lambda(x)}{\alpha}{\beta}{\gamma}{\delta}=: \frac{\pochhammer{n+\alpha+\beta+1}{n}}{\pochhammer{\alpha+1}{n}\pochhammer{\beta+\delta+1}{n}\pochhammer{\gamma+1}{n}}\monicRacah{n}@@{\lambda(x)}{\alpha}{\beta}{\gamma}{\delta} } [3]

Section 9.3 Continuous dual Hahn

Section 9.4 Continuous Hahn

normctsHahnptilde

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normctsHahnptilde{n}@@{x}{a}{b}{c}{d}:=\normctsHahnptilde{n}@{x}{a}{b}{c}{d}=\frac{n!}{i^n\pochhammer{a+c}{n}\pochhammer{a+d}{n}}\ctsHahn{n}@{x}{a}{b}{c}{d}. } [4]

Section 9.5 Hahn

Section 9.6 Dual Hahn

Section 9.7 Meixner-Pollaczek

Section 9.8 Jacobi

Section 9.9Jacobi: Special cases

Section 9.10 Pseudo Jacobi

Section 9.11 Meixner

Section 9.12 Krawtchouk

Section 9.13 Laguerre

Section 9.14 Bessel

Section 9.15 Charlier

Section 9.16 Hermite