Formula:KLS:09.08:09: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
Line 2: Line 2:
<div id="drmf_head">
<div id="drmf_head">
<div id="alignleft"> << [[Formula:KLS:09.08:08|Formula:KLS:09.08:08]] </div>
<div id="alignleft"> << [[Formula:KLS:09.08:08|Formula:KLS:09.08:08]] </div>
<div id="aligncenter"> [[Jacobi#KLS:09.08:09|formula in Jacobi]] </div>
<div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:09|formula in Jacobi: Special cases]] </div>
<div id="alignright"> [[Formula:KLS:09.08:10|Formula:KLS:09.08:10]] >> </div>
<div id="alignright"> [[Formula:KLS:09.08:10|Formula:KLS:09.08:10]] >> </div>
</div>
</div>


<br /><div align="center"><math>{\displaystyle  
<br /><div align="center"><math>{\displaystyle  
(1-x^2)\frac{d}{dx}\Jacobi{\alpha}{\beta}{n}@{x}+
(1-x^2)\frac{d}{dx}\Ultra{\lambda}{n}@{x}+(1-2\lambda)x\Ultra{\lambda}{n}@{x}=
\left[(\beta-\alpha)-(\alpha+\beta)x\right]\Jacobi{\alpha}{\beta}{n}@{x}
-\frac{(n+1)(2\lambda+n-1)}{2(\lambda-1)} \Ultra{\lambda-1}{n+1}@{x}
{}=-2(n+1)\Jacobi{\alpha-1}{\beta-1}{n+1}@{x}
}</math></div>
}</math></div>


Line 18: Line 17:
== Symbols List ==
== Symbols List ==


<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r3 <math>{\displaystyle P^{(\alpha,\beta)}_{n}}</math>]</span> : Jacobi polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r3 http://dlmf.nist.gov/18.3#T1.t1.r3]
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r5 <math>{\displaystyle C^{\mu}_{n}}</math>]</span> : ultraspherical/Gegenbauer polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r5 http://dlmf.nist.gov/18.3#T1.t1.r5]
<br />
<br />


Line 31: Line 30:
<br /><div id="drmf_foot">
<br /><div id="drmf_foot">
<div id="alignleft"> << [[Formula:KLS:09.08:08|Formula:KLS:09.08:08]] </div>
<div id="alignleft"> << [[Formula:KLS:09.08:08|Formula:KLS:09.08:08]] </div>
<div id="aligncenter"> [[Jacobi#KLS:09.08:09|formula in Jacobi]] </div>
<div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:09|formula in Jacobi: Special cases]] </div>
<div id="alignright"> [[Formula:KLS:09.08:10|Formula:KLS:09.08:10]] >> </div>
<div id="alignright"> [[Formula:KLS:09.08:10|Formula:KLS:09.08:10]] >> </div>
</div>
</div>

Revision as of 23:34, 5 March 2017


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (1-x^2)\frac{d}{dx}\Ultra{\lambda}{n}@{x}+(1-2\lambda)x\Ultra{\lambda}{n}@{x}= -\frac{(n+1)(2\lambda+n-1)}{2(\lambda-1)} \Ultra{\lambda-1}{n+1}@{x} }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C^{\mu}_{n}}}  : ultraspherical/Gegenbauer polynomial : http://dlmf.nist.gov/18.3#T1.t1.r5

Bibliography

Equation in Section 9.8 of KLS.

URL links

We ask users to provide relevant URL links in this space.