Formula:KLS:09.08:10: Difference between revisions
Jump to navigation
Jump to search
imported>SeedBot DRMF |
imported>SeedBot DRMF |
||
Line 2: | Line 2: | ||
<div id="drmf_head"> | <div id="drmf_head"> | ||
<div id="alignleft"> << [[Formula:KLS:09.08:09|Formula:KLS:09.08:09]] </div> | <div id="alignleft"> << [[Formula:KLS:09.08:09|Formula:KLS:09.08:09]] </div> | ||
<div id="aligncenter"> [[Jacobi#KLS:09.08:10|formula in Jacobi]] </div> | <div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:10|formula in Jacobi: Special cases]] </div> | ||
<div id="alignright"> [[Formula:KLS:09.08:11|Formula:KLS:09.08:11]] >> </div> | <div id="alignright"> [[Formula:KLS:09.08:11|Formula:KLS:09.08:11]] >> </div> | ||
</div> | </div> | ||
<br /><div align="center"><math>{\displaystyle | <br /><div align="center"><math>{\displaystyle | ||
\frac{d}{dx}\left[(1-x)^\ | \frac{d}{dx}\left[(1-x^2)^{\lambda-\textstyle\frac{1}{2}}\Ultra{\lambda}{n}@{x}\right] | ||
{}=- | {}=-\frac{(n+1)(2\lambda+n-1)}{2(\lambda-1)}(1-x^2)^{\lambda-\textstyle\frac{3}{2}}\Ultra{\lambda-1}{n+1}@{x} | ||
}</math></div> | }</math></div> | ||
Line 17: | Line 17: | ||
== Symbols List == | == Symbols List == | ||
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1. | <span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r5 <math>{\displaystyle C^{\mu}_{n}}</math>]</span> : ultraspherical/Gegenbauer polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r5 http://dlmf.nist.gov/18.3#T1.t1.r5] | ||
<br /> | <br /> | ||
Line 30: | Line 30: | ||
<br /><div id="drmf_foot"> | <br /><div id="drmf_foot"> | ||
<div id="alignleft"> << [[Formula:KLS:09.08:09|Formula:KLS:09.08:09]] </div> | <div id="alignleft"> << [[Formula:KLS:09.08:09|Formula:KLS:09.08:09]] </div> | ||
<div id="aligncenter"> [[Jacobi#KLS:09.08:10|formula in Jacobi]] </div> | <div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:10|formula in Jacobi: Special cases]] </div> | ||
<div id="alignright"> [[Formula:KLS:09.08:11|Formula:KLS:09.08:11]] >> </div> | <div id="alignright"> [[Formula:KLS:09.08:11|Formula:KLS:09.08:11]] >> </div> | ||
</div> | </div> |
Revision as of 23:34, 5 March 2017
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \frac{d}{dx}\left[(1-x^2)^{\lambda-\textstyle\frac{1}{2}}\Ultra{\lambda}{n}@{x}\right] {}=-\frac{(n+1)(2\lambda+n-1)}{2(\lambda-1)}(1-x^2)^{\lambda-\textstyle\frac{3}{2}}\Ultra{\lambda-1}{n+1}@{x} }}
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C^{\mu}_{n}}}
: ultraspherical/Gegenbauer polynomial : http://dlmf.nist.gov/18.3#T1.t1.r5
Bibliography
Equation in Section 9.8 of KLS.
URL links
We ask users to provide relevant URL links in this space.