Formula:KLS:09.08:16: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
Line 2: Line 2:
<div id="drmf_head">
<div id="drmf_head">
<div id="alignleft"> << [[Formula:KLS:09.08:15|Formula:KLS:09.08:15]] </div>
<div id="alignleft"> << [[Formula:KLS:09.08:15|Formula:KLS:09.08:15]] </div>
<div id="aligncenter"> [[Jacobi#KLS:09.08:16|formula in Jacobi]] </div>
<div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:16|formula in Jacobi: Special cases]] </div>
<div id="alignright"> [[Formula:KLS:09.08:17|Formula:KLS:09.08:17]] >> </div>
<div id="alignright"> [[Formula:KLS:09.08:17|Formula:KLS:09.08:17]] >> </div>
</div>
</div>


<br /><div align="center"><math>{\displaystyle  
<br /><div align="center"><math>{\displaystyle  
\HyperpFq{2}{1}@@{\gamma,\alpha+\beta+1-\gamma}{\alpha+1}{\frac{1-R-t}{2}}\
\HyperpFq{2}{1}@@{\gamma,2\lambda-\gamma}{\lambda+\frac{1}{2}}{\frac{1-R-t}{2}}\
\HyperpFq{2}{1}@@{\gamma,\alpha+\beta+1-\gamma}{\beta+1}{\frac{1-R+t}{2}}
\HyperpFq{2}{1}@@{\gamma,2\lambda-\gamma}{\lambda+\frac{1}{2}}{\frac{1-R+t}{2}}
{}=\sum_{n=0}^{\infty}
{}=\sum_{n=0}^{\infty}\frac{\pochhammer{\gamma}{n}\pochhammer{2\lambda-\gamma}{n}}
\frac{\pochhammer{\gamma}{n}\pochhammer{\alpha+\beta+1-\gamma}{n}}{\pochhammer{\alpha+1}{n}\pochhammer{\beta+1}{n}}\Jacobi{\alpha}{\beta}{n}@{x}t^n
{\pochhammer{2\lambda}{n}\pochhammer{\lambda+\frac{1}{2}}{n}}\Ultra{\lambda}{n}@{x}t^n
}</math></div>
}</math></div>


== Substitution(s) ==
== Substitution(s) ==


<div align="left"><math>{\displaystyle R=\sqrt{1-2xt+t^2}}</math></div><br />
<div align="left"><math>{\displaystyle R=\sqrt{1-2xt+t^2}}</math> &<br /> <math>{\displaystyle \gamma}</math> arbitrary</div><br />


== Proof ==
== Proof ==
Line 23: Line 23:
== Symbols List ==
== Symbols List ==


& : logical and<br />
<span class="plainlinks">[http://dlmf.nist.gov/16.2#E1 <math>{\displaystyle {{}_{p}F_{q}}}</math>]</span> : generalized hypergeometric function : [http://dlmf.nist.gov/16.2#E1 http://dlmf.nist.gov/16.2#E1]<br />
<span class="plainlinks">[http://dlmf.nist.gov/16.2#E1 <math>{\displaystyle {{}_{p}F_{q}}}</math>]</span> : generalized hypergeometric function : [http://dlmf.nist.gov/16.2#E1 http://dlmf.nist.gov/16.2#E1]<br />
<span class="plainlinks">[http://drmf.wmflabs.org/wiki/Definition:sum <math>{\displaystyle \Sigma}</math>]</span> : sum : [http://drmf.wmflabs.org/wiki/Definition:sum http://drmf.wmflabs.org/wiki/Definition:sum]<br />
<span class="plainlinks">[http://drmf.wmflabs.org/wiki/Definition:sum <math>{\displaystyle \Sigma}</math>]</span> : sum : [http://drmf.wmflabs.org/wiki/Definition:sum http://drmf.wmflabs.org/wiki/Definition:sum]<br />
<span class="plainlinks">[http://dlmf.nist.gov/5.2#iii <math>{\displaystyle (a)_n}</math>]</span> : Pochhammer symbol : [http://dlmf.nist.gov/5.2#iii http://dlmf.nist.gov/5.2#iii]<br />
<span class="plainlinks">[http://dlmf.nist.gov/5.2#iii <math>{\displaystyle (a)_n}</math>]</span> : Pochhammer symbol : [http://dlmf.nist.gov/5.2#iii http://dlmf.nist.gov/5.2#iii]<br />
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r3 <math>{\displaystyle P^{(\alpha,\beta)}_{n}}</math>]</span> : Jacobi polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r3 http://dlmf.nist.gov/18.3#T1.t1.r3]
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r5 <math>{\displaystyle C^{\mu}_{n}}</math>]</span> : ultraspherical/Gegenbauer polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r5 http://dlmf.nist.gov/18.3#T1.t1.r5]
<br />
<br />


Line 39: Line 40:
<br /><div id="drmf_foot">
<br /><div id="drmf_foot">
<div id="alignleft"> << [[Formula:KLS:09.08:15|Formula:KLS:09.08:15]] </div>
<div id="alignleft"> << [[Formula:KLS:09.08:15|Formula:KLS:09.08:15]] </div>
<div id="aligncenter"> [[Jacobi#KLS:09.08:16|formula in Jacobi]] </div>
<div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:16|formula in Jacobi: Special cases]] </div>
<div id="alignright"> [[Formula:KLS:09.08:17|Formula:KLS:09.08:17]] >> </div>
<div id="alignright"> [[Formula:KLS:09.08:17|Formula:KLS:09.08:17]] >> </div>
</div>
</div>

Revision as of 23:34, 5 March 2017


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \HyperpFq{2}{1}@@{\gamma,2\lambda-\gamma}{\lambda+\frac{1}{2}}{\frac{1-R-t}{2}}\ \HyperpFq{2}{1}@@{\gamma,2\lambda-\gamma}{\lambda+\frac{1}{2}}{\frac{1-R+t}{2}} {}=\sum_{n=0}^{\infty}\frac{\pochhammer{\gamma}{n}\pochhammer{2\lambda-\gamma}{n}} {\pochhammer{2\lambda}{n}\pochhammer{\lambda+\frac{1}{2}}{n}}\Ultra{\lambda}{n}@{x}t^n }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle R=\sqrt{1-2xt+t^2}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \gamma}} arbitrary


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{p}F_{q}}}}  : generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Sigma}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a)_n}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C^{\mu}_{n}}}  : ultraspherical/Gegenbauer polynomial : http://dlmf.nist.gov/18.3#T1.t1.r5

Bibliography

Equation in Section 9.8 of KLS.

URL links

We ask users to provide relevant URL links in this space.