Formula:KLS:09.08:17: Difference between revisions
imported>SeedBot DRMF |
imported>SeedBot DRMF |
||
Line 2: | Line 2: | ||
<div id="drmf_head"> | <div id="drmf_head"> | ||
<div id="alignleft"> << [[Formula:KLS:09.08:16|Formula:KLS:09.08:16]] </div> | <div id="alignleft"> << [[Formula:KLS:09.08:16|Formula:KLS:09.08:16]] </div> | ||
<div id="aligncenter"> [[Jacobi#KLS:09.08:17|formula in Jacobi]] </div> | <div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:17|formula in Jacobi: Special cases]] </div> | ||
<div id="alignright"> [[Formula:KLS:09.08:18|Formula:KLS:09.08:18]] >> </div> | <div id="alignright"> [[Formula:KLS:09.08:18|Formula:KLS:09.08:18]] >> </div> | ||
</div> | </div> | ||
<br /><div align="center"><math>{\displaystyle | <br /><div align="center"><math>{\displaystyle | ||
(1-xt)^{-\gamma}\,\HyperpFq{2}{1}@@{\frac{1}{2}\gamma,\frac{1}{2}\gamma+\frac{1}{2}}{\lambda+\frac{1}{2}}{\frac{(x^2-1)t^2}{(1-xt)^2}} | |||
\ | {}=\sum_{n=0}^{\infty}\frac{\pochhammer{\gamma}{n}}{\pochhammer{2\lambda}{n}}\Ultra{\lambda}{n}@{x}t^n | ||
{ | |||
}</math></div> | }</math></div> | ||
== Constraint(s) == | |||
<div align="left"><math>{\displaystyle \gamma}</math> arbitrary</div><br /> | |||
== Proof == | == Proof == | ||
Line 18: | Line 21: | ||
== Symbols List == | == Symbols List == | ||
<span class="plainlinks">[http://dlmf.nist.gov/ | <span class="plainlinks">[http://dlmf.nist.gov/16.2#E1 <math>{\displaystyle {{}_{p}F_{q}}}</math>]</span> : generalized hypergeometric function : [http://dlmf.nist.gov/16.2#E1 http://dlmf.nist.gov/16.2#E1]<br /> | ||
<span class="plainlinks">[http://dlmf.nist.gov/ | <span class="plainlinks">[http://drmf.wmflabs.org/wiki/Definition:sum <math>{\displaystyle \Sigma}</math>]</span> : sum : [http://drmf.wmflabs.org/wiki/Definition:sum http://drmf.wmflabs.org/wiki/Definition:sum]<br /> | ||
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1. | <span class="plainlinks">[http://dlmf.nist.gov/5.2#iii <math>{\displaystyle (a)_n}</math>]</span> : Pochhammer symbol : [http://dlmf.nist.gov/5.2#iii http://dlmf.nist.gov/5.2#iii]<br /> | ||
<span class="plainlinks">[http://dlmf.nist.gov/18.3#T1.t1.r5 <math>{\displaystyle C^{\mu}_{n}}</math>]</span> : ultraspherical/Gegenbauer polynomial : [http://dlmf.nist.gov/18.3#T1.t1.r5 http://dlmf.nist.gov/18.3#T1.t1.r5] | |||
<br /> | <br /> | ||
Line 33: | Line 37: | ||
<br /><div id="drmf_foot"> | <br /><div id="drmf_foot"> | ||
<div id="alignleft"> << [[Formula:KLS:09.08:16|Formula:KLS:09.08:16]] </div> | <div id="alignleft"> << [[Formula:KLS:09.08:16|Formula:KLS:09.08:16]] </div> | ||
<div id="aligncenter"> [[Jacobi#KLS:09.08:17|formula in Jacobi]] </div> | <div id="aligncenter"> [[Jacobi:_Special_cases#KLS:09.08:17|formula in Jacobi: Special cases]] </div> | ||
<div id="alignright"> [[Formula:KLS:09.08:18|Formula:KLS:09.08:18]] >> </div> | <div id="alignright"> [[Formula:KLS:09.08:18|Formula:KLS:09.08:18]] >> </div> | ||
</div> | </div> |
Revision as of 23:34, 5 March 2017
Constraint(s)
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{p}F_{q}}}}
: generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Sigma}}
: sum : http://drmf.wmflabs.org/wiki/Definition:sum
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a)_n}}
: Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C^{\mu}_{n}}}
: ultraspherical/Gegenbauer polynomial : http://dlmf.nist.gov/18.3#T1.t1.r5
Bibliography
Equation in Section 9.8 of KLS.
URL links
We ask users to provide relevant URL links in this space.