Formula:KLS:14.10:12: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
m Move page script moved page Formula:KLS:14.10:12 to F:KLS:14.10:12
 
(No difference)

Latest revision as of 07:37, 22 December 2019


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle x\monicctsqJacobi{\alpha}{\beta}{n}@@{x}{q}=\monicctsqJacobi{\alpha}{\beta}{n+1}@@{x}{q}+\frac{1}{2}\left[q^{\frac{1}{2}\alpha+\frac{1}{4}}+ q^{-\frac{1}{2}\alpha-\frac{1}{4}}-(A_n+C_n)\right]\monicctsqJacobi{\alpha}{\beta}{n}@@{x}{q} {}+\frac{1}{4}A_{n-1}C_n\monicctsqJacobi{\alpha}{\beta}{n-1}@@{x}{q} }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C_n=\frac{q^{\frac{1}{2}\alpha+\frac{1}{4}}(1-q^n)(1-q^{n+\beta})(1+q^{n+\frac{1}{2}(\alpha+\beta)})(1+q^{n+\frac{1}{2}(\alpha+\beta+1)})} {(1-q^{2n+\alpha+\beta})(1-q^{2n+\alpha+\beta+1})}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle A_n=\frac{(1-q^{n+\alpha+1})(1-q^{n+\alpha+\beta+1})(1+q^{n+\frac{1}{2}(\alpha+\beta+1)})(1+q^{n+\frac{1}{2}(\alpha+\beta+2)})} {q^{\frac{1}{2}\alpha+\frac{1}{4}}(1-q^{2n+\alpha+\beta+1})(1-q^{2n+\alpha+\beta+2})}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {\widehat P}^{(\alpha,\beta)}_{n}}}  : monic continuous Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:monicctsqJacobi

Bibliography

Equation in Section 14.10 of KLS.

URL links

We ask users to provide relevant URL links in this space.