Formula:KLS:09.04:15
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (c-\textstyle\frac{1}{2}-\iunit x)(d-\textstyle\frac{1}{2}-\iunit x) \ctsHahn{n}@{x+\textstyle\frac{1}{2}\iunit}{a}{b}{c}{d} {}-(a-\textstyle\frac{1}{2}+\iunit x)(b-\textstyle\frac{1}{2}+\iunit x) \ctsHahn{n}@{x-\textstyle\frac{1}{2}\iunit}{a}{b}{c}{d} {}=\frac{n+1}{\iunit}\ctsHahn{n+1}@{x}{a-\textstyle\frac{1}{2}}{ b-\textstyle\frac{1}{2}}{c-\textstyle\frac{1}{2}}{d-\textstyle\frac{1}{2}} }}
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}
: imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle p_{n}}}
: continuous Hahn polynomial : http://dlmf.nist.gov/18.19#P2.p1
Bibliography
Equation in Section 9.4 of KLS.
URL links
We ask users to provide relevant URL links in this space.