Formula:DLMF:25.5:E7

From DRMF
Revision as of 00:34, 6 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


\RiemannZeta @ s = 1 2 + 1 s - 1 + m = 1 n \BernoulliB 2 m ( 2 m ) ! Γ ( s + 2 m - 1 ) Γ ( s ) + 1 Γ ( s ) 0 ( 1 e x - 1 - 1 x + 1 2 - m = 1 n \BernoulliB 2 m ( 2 m ) ! x 2 m - 1 ) x s - 1 e x d x \RiemannZeta @ 𝑠 1 2 1 𝑠 1 superscript subscript 𝑚 1 𝑛 \BernoulliB 2 𝑚 2 𝑚 Euler-Gamma 𝑠 2 𝑚 1 Euler-Gamma 𝑠 1 Euler-Gamma 𝑠 superscript subscript 0 1 𝑥 1 1 𝑥 1 2 superscript subscript 𝑚 1 𝑛 \BernoulliB 2 𝑚 2 𝑚 superscript 𝑥 2 𝑚 1 superscript 𝑥 𝑠 1 𝑥 𝑥 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{2}+\frac{1% }{s-1}+\sum_{m=1}^{n}\frac{\BernoulliB{2m}}{(2m)!}\frac{\Gamma\left(s+2m-1% \right)}{\Gamma\left(s\right)}+\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}% \left(\frac{1}{{\mathrm{e}^{x}}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{m=1}^{n}\frac% {\BernoulliB{2m}}{(2m)!}x^{2m-1}\right)\frac{x^{s-1}}{{\mathrm{e}^{x}}}\mathrm% {d}x}}}

Constraint(s)

s > - ( 2 n + 1 ) 𝑠 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>-(2n+1)}}} &
n = 1 , 2 , 3 , 𝑛 1 2 3 {\displaystyle{\displaystyle{\displaystyle n=1,2,3,\dots}}} &
s 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle s\neq 1}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Follows from

\RiemannZeta @ s = 1 2 + 1 s - 1 + 1 Γ ( s ) 0 ( 1 e x - 1 - 1 x + 1 2 ) x s - 1 e x d x \RiemannZeta @ 𝑠 1 2 1 𝑠 1 1 Euler-Gamma 𝑠 superscript subscript 0 1 𝑥 1 1 𝑥 1 2 superscript 𝑥 𝑠 1 𝑥 𝑥 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{2}+\frac{1% }{s-1}+\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\left(\frac{1}{{\mathrm{% e}^{x}}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{{\mathrm{e}^{x}}}% \mathrm{d}x}}} {\displaystyle \RiemannZeta@{s} = \frac{1}{2} + \frac{1}{s-1} + \frac{1}{\EulerGamma@{s}} \int_0^\infty \left( \frac{1}{\expe^x-1} - \frac{1}{x} + \frac{1}{2} \right) \frac{x^{s-1}}{\expe^x} \diff{x} }
because Γ ( s + 2 m - 1 ) = 0 e - x x s + 2 m - 2 d x Euler-Gamma 𝑠 2 𝑚 1 superscript subscript 0 𝑥 superscript 𝑥 𝑠 2 𝑚 2 𝑥 {\displaystyle{\displaystyle{\displaystyle\Gamma\left(s+2m-1\right)=\int_{0}^{% \infty}{\mathrm{e}^{-x}}x^{s+2m-2}\mathrm{d}x}}}
(see
Γ ( z ) = 0 e - t t z - 1 d t Euler-Gamma 𝑧 superscript subscript 0 𝑡 superscript 𝑡 𝑧 1 𝑡 {\displaystyle{\displaystyle{\displaystyle\Gamma\left(z\right)=\int_{0}^{% \infty}{\mathrm{e}^{-t}}t^{z-1}\mathrm{d}t}}} {\displaystyle \EulerGamma@{z} = \int_0^\infty \expe^{-t} t^{z-1} \diff{t} }

).


Symbols List

& : logical and
ζ 𝜁 {\displaystyle{\displaystyle{\displaystyle\zeta}}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
Σ Σ {\displaystyle{\displaystyle{\displaystyle\Sigma}}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
B n subscript 𝐵 𝑛 {\displaystyle{\displaystyle{\displaystyle B_{n}}}}  : Bernoulli polynomial : http://dlmf.nist.gov/24.2#i
Γ Γ {\displaystyle{\displaystyle{\displaystyle\Gamma}}}  : Euler's gamma function : http://dlmf.nist.gov/5.2#E1
{\displaystyle{\displaystyle{\displaystyle\int}}}  : integral : http://dlmf.nist.gov/1.4#iv
e e {\displaystyle{\displaystyle{\displaystyle\mathrm{e}}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
d n x superscript d 𝑛 𝑥 {\displaystyle{\displaystyle{\displaystyle\mathrm{d}^{n}x}}}  : differential : http://dlmf.nist.gov/1.4#iv
z 𝑧 {\displaystyle{\displaystyle{\displaystyle\Re{z}}}}  : real part : http://dlmf.nist.gov/1.9#E2

Bibliography

Equation (7), Section 25.5 of DLMF.

URL links

We ask users to provide relevant URL links in this space.