Formula:KLS:14.17:14

From DRMF
Revision as of 23:33, 5 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \dualqKrawtchouk{n}@{\lambda(x+1)}{c}{N}{q}-\dualqKrawtchouk{n}@{\lambda(x)}{c}{N}{q} {}=\frac{q^{-n-x}(1-q^n)(1-cq^{2x-N+1})}{1-q^{-N}} \dualqKrawtchouk{n-1}@{\lambda(x)}{c}{N-1}{q} }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(n)=q^{-n}-pq^n}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x)=q^{-x}+cq^{x-N}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x):=q^{-x}+cq^{x-N}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(n)=q^{-n}-pq^n}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x)=q^{-x}+cq^{x-N}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle K_{n}}}  : dual Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:dualqKrawtchouk

Bibliography

Equation in Section 14.17 of KLS.

URL links

We ask users to provide relevant URL links in this space.