Formula:KLS:09.02:27

From DRMF
Revision as of 00:34, 6 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


\HyperpFq 21 @ @ - x , - x + β - γ β + δ + 1 t \HyperpFq 21 @ @ x + α + 1 , x + γ + 1 α - δ + 1 t = n = 0 N ( α + 1 ) n ( γ + 1 ) n ( α - δ + 1 ) n n ! R n ( λ ( x ) ; α , β , γ , δ ) t n \HyperpFq 21 @ @ 𝑥 𝑥 𝛽 𝛾 𝛽 𝛿 1 𝑡 \HyperpFq 21 @ @ 𝑥 𝛼 1 𝑥 𝛾 1 𝛼 𝛿 1 𝑡 superscript subscript 𝑛 0 𝑁 Pochhammer-symbol 𝛼 1 𝑛 Pochhammer-symbol 𝛾 1 𝑛 Pochhammer-symbol 𝛼 𝛿 1 𝑛 𝑛 Racah-polynomial-R 𝑛 𝜆 𝑥 𝛼 𝛽 𝛾 𝛿 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\HyperpFq{2}{1}@@{-x,-x+\beta-\gamma% }{\beta+\delta+1}{t}\,\HyperpFq{2}{1}@@{x+\alpha+1,x+\gamma+1}{\alpha-\delta+1% }{t}{}=\sum_{n=0}^{N}\frac{{\left(\alpha+1\right)_{n}}{\left(\gamma+1\right)_{% n}}}{{\left(\alpha-\delta+1\right)_{n}}n!}R_{n}\!\left(\lambda(x);\alpha,\beta% ,\gamma,\delta\right)t^{n}{}}}}

Constraint(s)

if α + 1 = - N or γ + 1 = - N formulae-sequence if 𝛼 1 𝑁 or 𝛾 1 𝑁 {\displaystyle{\displaystyle{\displaystyle\textrm{if}\quad\alpha+1=-N\quad% \textrm{or}\quad\gamma+1=-N}}}


Substitution(s)

λ ( x ) = x ( x + γ + δ + 1 ) 𝜆 𝑥 𝑥 𝑥 𝛾 𝛿 1 {\displaystyle{\displaystyle{\displaystyle\lambda(x)=x(x+\gamma+\delta+1)}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

F q p subscript subscript 𝐹 𝑞 𝑝 {\displaystyle{\displaystyle{\displaystyle{{}_{p}F_{q}}}}}  : generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1
Σ Σ {\displaystyle{\displaystyle{\displaystyle\Sigma}}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
( a ) n subscript 𝑎 𝑛 {\displaystyle{\displaystyle{\displaystyle(a)_{n}}}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
R n subscript 𝑅 𝑛 {\displaystyle{\displaystyle{\displaystyle R_{n}}}}  : Racah polynomial : http://dlmf.nist.gov/18.25#T1.t1.r4

Bibliography

Equation in Section 9.2 of KLS.

URL links

We ask users to provide relevant URL links in this space.