Formula:KLS:09.03:23

From DRMF
Revision as of 23:34, 5 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \expe^t\,\HyperpFq{2}{2}@@{a+\iunit x,a-\iunit x}{a+b,a+c}{-t}=\sum_{n=0}^{\infty} \frac{\ctsdualHahn{n}@{x^2}{a}{b}{c}}{\pochhammer{a+b}{n}\pochhammer{a+c}{n}n!}t^n }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{p}F_{q}}}}  : generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Sigma}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle S_{n}}}  : continuous dual Hahn polynomial : http://dlmf.nist.gov/18.25#T1.t1.r3
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a)_n}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii

Bibliography

Equation in Section 9.3 of KLS.

URL links

We ask users to provide relevant URL links in this space.