Formula:KLS:14.08:35

From DRMF
Revision as of 07:36, 22 December 2019 by Move page script (talk | contribs) (Move page script moved page Formula:KLS:14.08:35 to F:KLS:14.08:35)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qinvAlSalamChihara{n}@{\frac12(aq^{-x}+a^{-1}q^x)}{a}{b }{q^{-1}} =(-ab^{-1})^x q^{-\frac12 x(x+1)} \frac{\qPochhammer{qba^{-1}}{q}{x}}{\qPochhammer{a^{-1}b^{-1}}{q}{x}} \littleqJacobi{x}@{q^n}{ba^{-1}}{(qab)^{-1}}{q} }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle Q_{n}}}  : Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -inverse Al-Salam-Chihara polynomial : http://dlmf.nist.gov/23.1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a;q)_n}}  : Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle p_{n}}}  : little Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:littleqJacobi

Bibliography

Equation in Section 14.8 of KLS.

URL links

We ask users to provide relevant URL links in this space.