Results of Generalized Hypergeometric Functions and Meijer G-Function
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
16.2.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{p+1}{q}@@{-m,\mathbf{a}}{\mathbf{b}}{z} = \frac{\Pochhammersym{\mathbf{a}}{m}(-z)^{m}}{\Pochhammersym{\mathbf{b}}{m}}\genhyperF{q+1}{p}@@{-m,1-m-\mathbf{b}}{1-m-\mathbf{a}}{\frac{(-1)^{p+q}}{z}}} | hypergeom([- m , a], [b], z)=(pochhammer(a, m)*(- z)^(m))/(pochhammer(b, m))*hypergeom([- m , 1 - m - b], [1 - m - a], ((- 1)^(p + q))/(z)) |
HypergeometricPFQ[{- m , a}, {b}, z]=Divide[Pochhammer[a, m]*(- z)^(m),Pochhammer[b, m]]*HypergeometricPFQ[{- m , 1 - m - b}, {1 - m - a}, Divide[(- 1)^(p + q),z]] |
Failure | Failure | Skip | Skip |
16.2.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{m}\frac{\Pochhammersym{\mathbf{a}}{k}}{\Pochhammersym{\mathbf{b}}{k}}\frac{z^{k}}{k!} = \frac{\Pochhammersym{\mathbf{a}}{m}z^{m}}{\Pochhammersym{\mathbf{b}}{m}m!}\genhyperF{q+2}{p}@@{-m,1,1-m-\mathbf{b}}{1-m-\mathbf{a}}{\frac{(-1)^{p+q+1}}{z}}} | sum((pochhammer(a, k))/(pochhammer(b, k))*((z)^(k))/(factorial(k)), k = 0..m)=(pochhammer(a, m)*(z)^(m))/(pochhammer(b, m)*factorial(m))*hypergeom([- m , 1 , 1 - m - b], [1 - m - a], ((- 1)^(p + q + 1))/(z)) |
Sum[Divide[Pochhammer[a, k],Pochhammer[b, k]]*Divide[(z)^(k),(k)!], {k, 0, m}]=Divide[Pochhammer[a, m]*(z)^(m),Pochhammer[b, m]*(m)!]*HypergeometricPFQ[{- m , 1 , 1 - m - b}, {1 - m - a}, Divide[(- 1)^(p + q + 1),z]] |
Failure | Failure | Skip | Skip |
16.3.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n}} | (z*diff(z, z))^(n)= (z)^(n)* diff((z)^(n), [z$(n)]) |
(z*D[z, z])^(n)= (z)^(n)* D[(z)^(n), {z, n}] |
Failure | Failure | Fail -0.-3.999999998*I <- {z = 2^(1/2)+I*2^(1/2), n = 2} 28.28427122-28.28427122*I <- {z = 2^(1/2)+I*2^(1/2), n = 3} -0.+3.999999998*I <- {z = 2^(1/2)-I*2^(1/2), n = 2} 28.28427122+28.28427122*I <- {z = 2^(1/2)-I*2^(1/2), n = 3} ... skip entries to safe data |
Fail
Complex[0.0, -4.0] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 4.0] <- {Rule[n, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |
16.3.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\genhyperF{0}{1}@{-}{b+1}{z}+b(b-1)\genhyperF{0}{1}@{-}{b}{z}-b(b-1)\genhyperF{0}{1}@{-}{b-1}{z} = 0} | z*hypergeom([-], [b + 1], z)+ b*(b - 1)* hypergeom([-], [b], z)- b*(b - 1)* hypergeom([-], [b - 1], z)= 0 |
z*HypergeometricPFQ[{-}, {b + 1}, z]+ b*(b - 1)* HypergeometricPFQ[{-}, {b}, z]- b*(b - 1)* HypergeometricPFQ[{-}, {b - 1}, z]= 0 |
Error | Failure | - | Error |
16.3.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a_{1}+2,a_{2},a_{3}}{b_{1},b_{2}}{z}a_{1}(a_{1}+1)(1-z)+\genhyperF{3}{2}@@{a_{1}+1,a_{2},a_{3}}{b_{1},b_{2}}{z}a_{1}\left(b_{1}+b_{2}-3a_{1}-2+z(2a_{1}-a_{2}-a_{3}+1)\right)+\genhyperF{3}{2}@@{a_{1},a_{2},a_{3}}{b_{1},b_{2}}{z}\left((2a_{1}-b_{1})(2a_{1}-b_{2})+a_{1}-a_{1}^{2}-z(a_{1}-a_{2})(a_{1}-a_{3})\right)-\genhyperF{3}{2}@@{a_{1}-1,a_{2},a_{3}}{b_{1},b_{2}}{z}(a_{1}-b_{1})(a_{1}-b_{2}) = 0} | hypergeom([a[1]+ 2 , a[2], a[3]], [b[1], b[2]], z)*a[1]*(a[1]+ 1)*(1 - z)+ hypergeom([a[1]+ 1 , a[2], a[3]], [b[1], b[2]], z)*a[1]*(b[1]+ b[2]- 3*a[1]- 2 + z*(2*a[1]- a[2]- a[3]+ 1))+ ((2*a[1]- b[1])*(2*a[1]- b[2])+ a[1]- a(a[1])^(2)- z*(a[1]- a[2])*(a[1]- a[3]))- hypergeom([a[1]- 1 , a[2], a[3]], [b[1], b[2]], z)*(a[1]- b[1])*(a[1]- b[2])= 0 |
HypergeometricPFQ[{Subscript[a, 1]+ 2 , Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z]*Subscript[a, 1]*(Subscript[a, 1]+ 1)*(1 - z)+ HypergeometricPFQ[{Subscript[a, 1]+ 1 , Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z]*Subscript[a, 1]*(Subscript[b, 1]+ Subscript[b, 2]- 3*Subscript[a, 1]- 2 + z*(2*Subscript[a, 1]- Subscript[a, 2]- Subscript[a, 3]+ 1))+ ((2*Subscript[a, 1]- Subscript[b, 1])*(2*Subscript[a, 1]- Subscript[b, 2])+ Subscript[a, 1]- a(Subscript[a, 1])^(2)- z*(Subscript[a, 1]- Subscript[a, 2])*(Subscript[a, 1]- Subscript[a, 3]))- HypergeometricPFQ[{Subscript[a, 1]- 1 , Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z]*(Subscript[a, 1]- Subscript[b, 1])*(Subscript[a, 1]- Subscript[b, 2])= 0 |
Failure | Failure | Skip | Skip |
16.4.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{-n,a,b}{c,d}{1} = \frac{\Pochhammersym{c-a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}\Pochhammersym{c-a-b}{n}}} | hypergeom([- n , a , b], [c , d], 1)=(pochhammer(c - a, n)*pochhammer(c - b, n))/(pochhammer(c, n)*pochhammer(c - a - b, n)) |
HypergeometricPFQ[{- n , a , b}, {c , d}, 1]=Divide[Pochhammer[c - a, n]*Pochhammer[c - b, n],Pochhammer[c, n]*Pochhammer[c - a - b, n]] |
Failure | Failure | Skip | Skip |
16.4.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,b,c}{a-b+1,a-c+1}{1} = \frac{\EulerGamma@{\frac{1}{2}a+1}\EulerGamma@{a-b+1}\EulerGamma@{a-c+1}\EulerGamma@{\frac{1}{2}a-b-c+1}}{\EulerGamma@{a+1}\EulerGamma@{\frac{1}{2}a-b+1}\EulerGamma@{\frac{1}{2}a-c+1}\EulerGamma@{a-b-c+1}}} | hypergeom([a , b , c], [a - b + 1 , a - c + 1], 1)=(GAMMA((1)/(2)*a + 1)*GAMMA(a - b + 1)*GAMMA(a - c + 1)*GAMMA((1)/(2)*a - b - c + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1)*GAMMA((1)/(2)*a - c + 1)*GAMMA(a - b - c + 1)) |
HypergeometricPFQ[{a , b , c}, {a - b + 1 , a - c + 1}, 1]=Divide[Gamma[Divide[1,2]*a + 1]*Gamma[a - b + 1]*Gamma[a - c + 1]*Gamma[Divide[1,2]*a - b - c + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]*Gamma[Divide[1,2]*a - c + 1]*Gamma[a - b - c + 1]] |
Successful | Successful | - | - |
16.4.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,b,c}{\frac{1}{2}(a+b+1),2c}{1} = \frac{\EulerGamma@{\frac{1}{2}}\EulerGamma@{c+\frac{1}{2}}\EulerGamma@{\frac{1}{2}(a+b+1)}\EulerGamma@{c+\frac{1}{2}(1-a-b)}}{\EulerGamma@{\frac{1}{2}(a+1)}\EulerGamma@{\frac{1}{2}(b+1)}\EulerGamma@{c+\frac{1}{2}(1-a)}\EulerGamma@{c+\frac{1}{2}(1-b)}}} | hypergeom([a , b , c], [(1)/(2)*(a + b + 1), 2*c], 1)=(GAMMA((1)/(2))*GAMMA(c +(1)/(2))*GAMMA((1)/(2)*(a + b + 1))*GAMMA(c +(1)/(2)*(1 - a - b)))/(GAMMA((1)/(2)*(a + 1))*GAMMA((1)/(2)*(b + 1))*GAMMA(c +(1)/(2)*(1 - a))*GAMMA(c +(1)/(2)*(1 - b))) |
HypergeometricPFQ[{a , b , c}, {Divide[1,2]*(a + b + 1), 2*c}, 1]=Divide[Gamma[Divide[1,2]]*Gamma[c +Divide[1,2]]*Gamma[Divide[1,2]*(a + b + 1)]*Gamma[c +Divide[1,2]*(1 - a - b)],Gamma[Divide[1,2]*(a + 1)]*Gamma[Divide[1,2]*(b + 1)]*Gamma[c +Divide[1,2]*(1 - a)]*Gamma[c +Divide[1,2]*(1 - b)]] |
Successful | Failure | - | Skip |
16.4.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,1-a,c}{d,2c-d+1}{1} = \frac{\pi\EulerGamma@{d}\EulerGamma@{2c-d+1}2^{1-2c}}{\EulerGamma@{c+\frac{1}{2}(a-d+1)}\EulerGamma@{c+1-\frac{1}{2}(a+d)}\EulerGamma@{\frac{1}{2}(a+d)}\EulerGamma@{\frac{1}{2}(d-a+1)}}} | hypergeom([a , 1 - a , c], [d , 2*c - d + 1], 1)=(Pi*GAMMA(d)*GAMMA(2*c - d + 1)*(2)^(1 - 2*c))/(GAMMA(c +(1)/(2)*(a - d + 1))*GAMMA(c + 1 -(1)/(2)*(a + d))*GAMMA((1)/(2)*(a + d))*GAMMA((1)/(2)*(d - a + 1))) |
HypergeometricPFQ[{a , 1 - a , c}, {d , 2*c - d + 1}, 1]=Divide[Pi*Gamma[d]*Gamma[2*c - d + 1]*(2)^(1 - 2*c),Gamma[c +Divide[1,2]*(a - d + 1)]*Gamma[c + 1 -Divide[1,2]*(a + d)]*Gamma[Divide[1,2]*(a + d)]*Gamma[Divide[1,2]*(d - a + 1)]] |
Successful | Successful | - | - |
16.4.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{-n,a,1-a}{d,1-d-2n}{1} = \frac{\Pochhammersym{\frac{1}{2}(a+d)}{n}\Pochhammersym{\frac{1}{2}(d-a+1)}{n}}{\Pochhammersym{\frac{1}{2}d}{n}\Pochhammersym{\frac{1}{2}(d+1)}{n}}} | hypergeom([- n , a , 1 - a], [d , 1 - d - 2*n], 1)=(pochhammer((1)/(2)*(a + d), n)*pochhammer((1)/(2)*(d - a + 1), n))/(pochhammer((1)/(2)*d, n)*pochhammer((1)/(2)*(d + 1), n)) |
HypergeometricPFQ[{- n , a , 1 - a}, {d , 1 - d - 2*n}, 1]=Divide[Pochhammer[Divide[1,2]*(a + d), n]*Pochhammer[Divide[1,2]*(d - a + 1), n],Pochhammer[Divide[1,2]*d, n]*Pochhammer[Divide[1,2]*(d + 1), n]] |
Failure | Failure | Skip | Fail
Complex[0.6167812573081491, -0.36130209551358583] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1]} Complex[0.5345650901276873, -0.45277145278729625] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2]} Complex[0.49947205392907457, -0.49663470546035027] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3]} Complex[1.2312873319809505, 0.8850107130731889] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[d, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1]} ... skip entries to safe data |
16.4.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{5}{4}@@{a,\frac{1}{2}a+1,b,c,d}{\frac{1}{2}a,a-b+1,a-c+1,a-d+1}{1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{a-c+1}\EulerGamma@{a-d+1}\EulerGamma@{a-b-c-d+1}}{\EulerGamma@{a+1}\EulerGamma@{a-b-c+1}\EulerGamma@{a-b-d+1}\EulerGamma@{a-c-d+1}}} | hypergeom([a ,(1)/(2)*a + 1 , b , c , d], [(1)/(2)*a , a - b + 1 , a - c + 1 , a - d + 1], 1)=(GAMMA(a - b + 1)*GAMMA(a - c + 1)*GAMMA(a - d + 1)*GAMMA(a - b - c - d + 1))/(GAMMA(a + 1)*GAMMA(a - b - c + 1)*GAMMA(a - b - d + 1)*GAMMA(a - c - d + 1)) |
HypergeometricPFQ[{a ,Divide[1,2]*a + 1 , b , c , d}, {Divide[1,2]*a , a - b + 1 , a - c + 1 , a - d + 1}, 1]=Divide[Gamma[a - b + 1]*Gamma[a - c + 1]*Gamma[a - d + 1]*Gamma[a - b - c - d + 1],Gamma[a + 1]*Gamma[a - b - c + 1]*Gamma[a - b - d + 1]*Gamma[a - c - d + 1]] |
Failure | Failure | Skip | Skip |
16.4.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{7}{6}@@{a,\frac{1}{2}a+1,b,c,d,f,-n}{\frac{1}{2}a,a-b+1,a-c+1,a-d+1,a-f+1,a+n+1}{1} = \frac{\Pochhammersym{a+1}{n}\Pochhammersym{a-b-c+1}{n}\Pochhammersym{a-b-d+1}{n}\Pochhammersym{a-c-d+1}{n}}{\Pochhammersym{a-b+1}{n}\Pochhammersym{a-c+1}{n}\Pochhammersym{a-d+1}{n}\Pochhammersym{a-b-c-d+1}{n}}} | hypergeom([a ,(1)/(2)*a + 1 , b , c , d , f , - n], [(1)/(2)*a , a - b + 1 , a - c + 1 , a - d + 1 , a - f + 1 , a + n + 1], 1)=(pochhammer(a + 1, n)*pochhammer(a - b - c + 1, n)*pochhammer(a - b - d + 1, n)*pochhammer(a - c - d + 1, n))/(pochhammer(a - b + 1, n)*pochhammer(a - c + 1, n)*pochhammer(a - d + 1, n)*pochhammer(a - b - c - d + 1, n)) |
HypergeometricPFQ[{a ,Divide[1,2]*a + 1 , b , c , d , f , - n}, {Divide[1,2]*a , a - b + 1 , a - c + 1 , a - d + 1 , a - f + 1 , a + n + 1}, 1]=Divide[Pochhammer[a + 1, n]*Pochhammer[a - b - c + 1, n]*Pochhammer[a - b - d + 1, n]*Pochhammer[a - c - d + 1, n],Pochhammer[a - b + 1, n]*Pochhammer[a - c + 1, n]*Pochhammer[a - d + 1, n]*Pochhammer[a - b - c - d + 1, n]] |
Failure | Failure | Skip | Skip |
16.4.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,b,c}{d,e}{1} = \frac{\EulerGamma@{e}\EulerGamma@{d+e-a-b-c}}{\EulerGamma@{e-a}\EulerGamma@{d+e-b-c}}\genhyperF{3}{2}@@{a,d-b,d-c}{d,d+e-b-c}{1}} | hypergeom([a , b , c], [d , e], 1)=(GAMMA(e)*GAMMA(d + e - a - b - c))/(GAMMA(e - a)*GAMMA(d + e - b - c))*hypergeom([a , d - b , d - c], [d , d + e - b - c], 1) |
HypergeometricPFQ[{a , b , c}, {d , e}, 1]=Divide[Gamma[e]*Gamma[d + e - a - b - c],Gamma[e - a]*Gamma[d + e - b - c]]*HypergeometricPFQ[{a , d - b , d - c}, {d , d + e - b - c}, 1] |
Failure | Failure | Skip | Skip |
16.4.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a-d)(b-d)(c-d)\left(\genhyperF{3}{2}@@{a,b,c}{d+1,e}{1}-\genhyperF{3}{2}@@{a,b,c}{d,e}{1}\right)+abc\genhyperF{3}{2}@@{a,b,c}{d,e}{1} = d(d-1)(a+b+c-d-e+1)\left(\genhyperF{3}{2}@@{a,b,c}{d,e}{1}-\genhyperF{3}{2}@@{a,b,c}{d-1,e}{1}\right)} | (a - d)*(b - d)*(c - d)*(hypergeom([a , b , c], [d + 1 , e], 1)- hypergeom([a , b , c], [d , e], 1))+ a*b*c*hypergeom([a , b , c], [d , e], 1)= d*(d - 1)*(a + b + c - d - e + 1)*(hypergeom([a , b , c], [d , e], 1)- hypergeom([a , b , c], [d - 1 , e], 1)) |
(a - d)*(b - d)*(c - d)*(HypergeometricPFQ[{a , b , c}, {d + 1 , e}, 1]- HypergeometricPFQ[{a , b , c}, {d , e}, 1])+ a*b*c*HypergeometricPFQ[{a , b , c}, {d , e}, 1]= d*(d - 1)*(a + b + c - d - e + 1)*(HypergeometricPFQ[{a , b , c}, {d , e}, 1]- HypergeometricPFQ[{a , b , c}, {d - 1 , e}, 1]) |
Failure | Failure | Skip | Skip |
16.4.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,b,c}{d,e}{1} = \dfrac{c(e-a)}{de}\genhyperF{3}{2}@@{a,b+1,c+1}{d+1,e+1}{1}+\dfrac{d-c}{d}\genhyperF{3}{2}@@{a,b+1,c}{d+1,e}{1}} | hypergeom([a , b , c], [d , e], 1)=(c*(e - a))/(d*e)*hypergeom([a , b + 1 , c + 1], [d + 1 , e + 1], 1)+(d - c)/(d)*hypergeom([a , b + 1 , c], [d + 1 , e], 1) |
HypergeometricPFQ[{a , b , c}, {d , e}, 1]=Divide[c*(e - a),d*e]*HypergeometricPFQ[{a , b + 1 , c + 1}, {d + 1 , e + 1}, 1]+Divide[d - c,d]*HypergeometricPFQ[{a , b + 1 , c}, {d + 1 , e}, 1] |
Failure | Failure | Skip | Skip |
16.4.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{4}{3}@@{-n,a,b,c}{d,e,f}{1} = \frac{\Pochhammersym{e-a}{n}\Pochhammersym{f-a}{n}}{\Pochhammersym{e}{n}\Pochhammersym{f}{n}}\genhyperF{4}{3}@@{-n,a,d-b,d-c}{d,a-e-n+1,a-f-n+1}{1}} | hypergeom([- n , a , b , c], [d , e , f], 1)=(pochhammer(e - a, n)*pochhammer(f - a, n))/(pochhammer(e, n)*pochhammer(f, n))*hypergeom([- n , a , d - b , d - c], [d , a - e - n + 1 , a - f - n + 1], 1) |
HypergeometricPFQ[{- n , a , b , c}, {d , e , f}, 1]=Divide[Pochhammer[e - a, n]*Pochhammer[f - a, n],Pochhammer[e, n]*Pochhammer[f, n]]*HypergeometricPFQ[{- n , a , d - b , d - c}, {d , a - e - n + 1 , a - f - n + 1}, 1] |
Failure | Failure | Skip | Skip |
16.4.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{7}{6}@@{a,\frac{1}{2}a+1,b,c,d,e,f}{\frac{1}{2}a,a-b+1,a-c+1,a-d+1,a-e+1,a-f+1}{1} = \frac{\EulerGamma@{a-d+1}\EulerGamma@{a-e+1}\EulerGamma@{a-f+1}\EulerGamma@{a-d-e-f+1}}{\EulerGamma@{a+1}\EulerGamma@{a-d-e+1}\EulerGamma@{a-d-f+1}\EulerGamma@{a-e-f+1}}\genhyperF{4}{3}@@{a-b-c+1,d,e,f}{a-b+1,a-c+1,d+e+f-a}{1}} | hypergeom([a ,(1)/(2)*a + 1 , b , c , d , e , f], [(1)/(2)*a , a - b + 1 , a - c + 1 , a - d + 1 , a - e + 1 , a - f + 1], 1)=(GAMMA(a - d + 1)*GAMMA(a - e + 1)*GAMMA(a - f + 1)*GAMMA(a - d - e - f + 1))/(GAMMA(a + 1)*GAMMA(a - d - e + 1)*GAMMA(a - d - f + 1)*GAMMA(a - e - f + 1))*hypergeom([a - b - c + 1 , d , e , f], [a - b + 1 , a - c + 1 , d + e + f - a], 1) |
HypergeometricPFQ[{a ,Divide[1,2]*a + 1 , b , c , d , e , f}, {Divide[1,2]*a , a - b + 1 , a - c + 1 , a - d + 1 , a - e + 1 , a - f + 1}, 1]=Divide[Gamma[a - d + 1]*Gamma[a - e + 1]*Gamma[a - f + 1]*Gamma[a - d - e - f + 1],Gamma[a + 1]*Gamma[a - d - e + 1]*Gamma[a - d - f + 1]*Gamma[a - e - f + 1]]*HypergeometricPFQ[{a - b - c + 1 , d , e , f}, {a - b + 1 , a - c + 1 , d + e + f - a}, 1] |
Failure | Failure | Skip | Skip |
16.6.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,b,c}{a-b+1,a-c+1}{z} = (1-z)^{-a}\genhyperF{3}{2}@@{a-b-c+1,\frac{1}{2}a,\frac{1}{2}(a+1)}{a-b+1,a-c+1}{\frac{-4z}{(1-z)^{2}}}} | hypergeom([a , b , c], [a - b + 1 , a - c + 1], z)=(1 - z)^(- a)* hypergeom([a - b - c + 1 ,(1)/(2)*a ,(1)/(2)*(a + 1)], [a - b + 1 , a - c + 1], (- 4*z)/((1 - z)^(2))) |
HypergeometricPFQ[{a , b , c}, {a - b + 1 , a - c + 1}, z]=(1 - z)^(- a)* HypergeometricPFQ[{a - b - c + 1 ,Divide[1,2]*a ,Divide[1,2]*(a + 1)}, {a - b + 1 , a - c + 1}, Divide[- 4*z,(1 - z)^(2)]] |
Failure | Failure | Skip | Skip |
16.6.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{a,2b-a-1,2-2b+a}{b,a-b+\frac{3}{2}}{\frac{z}{4}} = (1-z)^{-a}\genhyperF{3}{2}@@{\frac{1}{3}a,\frac{1}{3}a+\frac{1}{3},\frac{1}{3}a+\frac{2}{3}}{b,a-b+\frac{3}{2}}{\frac{-27z}{4(1-z)^{3}}}} | hypergeom([a , 2*b - a - 1 , 2 - 2*b + a], [b , a - b +(3)/(2)], (z)/(4))=(1 - z)^(- a)* hypergeom([(1)/(3)*a ,(1)/(3)*a +(1)/(3),(1)/(3)*a +(2)/(3)], [b , a - b +(3)/(2)], (- 27*z)/(4*(1 - z)^(3))) |
HypergeometricPFQ[{a , 2*b - a - 1 , 2 - 2*b + a}, {b , a - b +Divide[3,2]}, Divide[z,4]]=(1 - z)^(- a)* HypergeometricPFQ[{Divide[1,3]*a ,Divide[1,3]*a +Divide[1,3],Divide[1,3]*a +Divide[2,3]}, {b , a - b +Divide[3,2]}, Divide[- 27*z,4*(1 - z)^(3)]] |
Failure | Failure | Fail 1.264484429+.9040719052*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} 6.675662159-3.231621754*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} .9005931042+.1301294103*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} .4136818818+.2979732613*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} ... skip entries to safe data |
Skip |
16.12.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{0}{1}@{-}{a}{z}\genhyperF{0}{1}@{-}{b}{z} = \genhyperF{2}{3}@@{\frac{1}{2}(a+b),\frac{1}{2}(a+b-1)}{a,b,a+b-1}{4z}} | hypergeom([-], [a], z)*hypergeom([-], [b], z)= hypergeom([(1)/(2)*(a + b),(1)/(2)*(a + b - 1)], [a , b , a + b - 1], 4*z) |
HypergeometricPFQ[{-}, {a}, z]*HypergeometricPFQ[{-}, {b}, z]= HypergeometricPFQ[{Divide[1,2]*(a + b),Divide[1,2]*(a + b - 1)}, {a , b , a + b - 1}, 4*z] |
Error | Failure | - | Error |
16.12.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\genhyperF{2}{1}@@{a,b}{a+b+\frac{1}{2}}{z}\right)^{2} = \genhyperF{3}{2}@@{2a,2b,a+b}{a+b+\frac{1}{2},2a+2b}{z}} | (hypergeom([a , b], [a + b +(1)/(2)], z))^(2)= hypergeom([2*a , 2*b , a + b], [a + b +(1)/(2), 2*a + 2*b], z) |
(HypergeometricPFQ[{a , b}, {a + b +Divide[1,2]}, z])^(2)= HypergeometricPFQ[{2*a , 2*b , a + b}, {a + b +Divide[1,2], 2*a + 2*b}, z] |
Failure | Failure | Fail -19187.29656+12814.21944*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} .2505536537-.2824002444*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} 8.286487590-21.96358656*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 160.2876416+891.1260277*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} ... skip entries to safe data |
Skip |
16.12.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\genhyperF{2}{1}@@{a,b}{c}{z}\right)^{2} = \sum_{k=0}^{\infty}\frac{\Pochhammersym{2a}{k}\Pochhammersym{2b}{k}\Pochhammersym{c-\frac{1}{2}}{k}}{\Pochhammersym{c}{k}\Pochhammersym{2c-1}{k}k!}\genhyperF{4}{3}@@{-\frac{1}{2}k,\frac{1}{2}(1-k),a+b-c+\frac{1}{2},\frac{1}{2}}{a+\frac{1}{2},b+\frac{1}{2},\frac{3}{2}-k-c}{1}z^{k}} | (hypergeom([a , b], [c], z))^(2)= sum((pochhammer(2*a, k)*pochhammer(2*b, k)*pochhammer(c -(1)/(2), k))/(pochhammer(c, k)*pochhammer(2*c - 1, k)*factorial(k))*hypergeom([-(1)/(2)*k ,(1)/(2)*(1 - k), a + b - c +(1)/(2),(1)/(2)], [a +(1)/(2), b +(1)/(2),(3)/(2)- k - c], 1)*(z)^(k), k = 0..infinity) |
(HypergeometricPFQ[{a , b}, {c}, z])^(2)= Sum[Divide[Pochhammer[2*a, k]*Pochhammer[2*b, k]*Pochhammer[c -Divide[1,2], k],Pochhammer[c, k]*Pochhammer[2*c - 1, k]*(k)!]*HypergeometricPFQ[{-Divide[1,2]*k ,Divide[1,2]*(1 - k), a + b - c +Divide[1,2],Divide[1,2]}, {a +Divide[1,2], b +Divide[1,2],Divide[3,2]- k - c}, 1]*(z)^(k), {k, 0, Infinity}] |
Failure | Failure | Skip | Skip |
16.16.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AppellF{3}@{\alpha}{\gamma-\alpha}{\beta}{\gamma-\beta}{\gamma}{x}{y} = (1-y)^{\alpha+\beta-\gamma}\genhyperF{2}{1}@@{\alpha,\beta}{\gamma}{x+y-xy}} | Error |
AppellF[3, , \[Alpha], \[Gamma]- \[Alpha], \[Beta], \[Gamma]- \[Beta]]*\[Gamma]*x*y =(1 - y)^(\[Alpha]+ \[Beta]- \[Gamma])* HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Gamma]}, x + y - x*y] |
Error | Failure | - | Skip |
16.16.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AppellF{4}@{\alpha}{\beta}{\gamma}{\alpha+\beta-\gamma+1}{x(1-y)}{y(1-x)} = \genhyperF{2}{1}@@{\alpha,\beta}{\gamma}{x}\genhyperF{2}{1}@@{\alpha,\beta}{\alpha+\beta-\gamma+1}{y}} | Error |
AppellF[4, , \[Alpha], \[Beta], \[Gamma], \[Alpha]+ \[Beta]- \[Gamma]+ 1]*x*(1 - y)*y*(1 - x)= HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Gamma]}, x]*HypergeometricPFQ[{\[Alpha], \[Beta]}, {\[Alpha]+ \[Beta]- \[Gamma]+ 1}, y] |
Error | Failure | - | Skip |
16.23.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{3}{2}@@{-n,n+\alpha+2,\frac{1}{2}(\alpha+1)}{\alpha+1,\frac{1}{2}(\alpha+3)}{x} > 0} | hypergeom([- n , n + alpha + 2 ,(1)/(2)*(alpha + 1)], [alpha + 1 ,(1)/(2)*(alpha + 3)], x)> 0 |
HypergeometricPFQ[{- n , n + \[Alpha]+ 2 ,Divide[1,2]*(\[Alpha]+ 1)}, {\[Alpha]+ 1 ,Divide[1,2]*(\[Alpha]+ 3)}, x]> 0 |
Failure | Failure | Skip | Successful |