Formula:KLS:14.03:13

From DRMF
Jump to navigation Jump to search


x p ^ n ( x ) = p ^ n + 1 ( x ) + 1 2 [ a + a - 1 - ( A n + C n ) ] p ^ n ( x ) + 1 4 ( 1 - q n ) ( 1 - a b q n - 1 ) ( 1 - a c q n - 1 ) ( 1 - b c q n - 1 ) p ^ n - 1 ( x ) 𝑥 continuous-dual-q-Hahn-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 continuous-dual-q-Hahn-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 1 2 delimited-[] 𝑎 superscript 𝑎 1 subscript 𝐴 𝑛 subscript 𝐶 𝑛 continuous-dual-q-Hahn-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 1 4 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 𝑛 1 1 𝑎 𝑐 superscript 𝑞 𝑛 1 1 𝑏 𝑐 superscript 𝑞 𝑛 1 continuous-dual-q-Hahn-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{p}}_{n}\!\left(x\right)=% {\widehat{p}}_{n+1}\!\left(x\right)+\frac{1}{2}\left[a+a^{-1}-(A_{n}+C_{n})% \right]{\widehat{p}}_{n}\!\left(x\right){}+\frac{1}{4}(1-q^{n})(1-abq^{n-1}){}% (1-acq^{n-1})(1-bcq^{n-1}){\widehat{p}}_{n-1}\!\left(x\right)}}}

Substitution(s)

C n = a ( 1 - q n ) ( 1 - b c q n - 1 ) subscript 𝐶 𝑛 𝑎 1 superscript 𝑞 𝑛 1 𝑏 𝑐 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=a(1-q^{n})(1-bcq^{n-1})}}} &
A n = a - 1 ( 1 - a b q n ) ( 1 - a c q n ) subscript 𝐴 𝑛 superscript 𝑎 1 1 𝑎 𝑏 superscript 𝑞 𝑛 1 𝑎 𝑐 superscript 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle A_{n}=a^{-1}(1-abq^{n})(1-acq^{n})}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
p ^ n subscript ^ 𝑝 𝑛 {\displaystyle{\displaystyle{\displaystyle{\widehat{p}}_{n}}}}  : monic continuous dual q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:monicctsdualqHahn

Bibliography

Equation in Section 14.3 of KLS.

URL links

We ask users to provide relevant URL links in this space.