Formula:KLS:14.10:55

From DRMF
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {\tilde w}(x;\beta|q)\ctsqUltra{n}@{x}{\beta}{q} {}=\left(\frac{q-1}{2}\right)^n q^{\frac{1}{4}n(n-1)}\frac{\qPochhammer{\beta}{q}{n}}{\qPochhammer{q,\beta^2q^n}{q}{n}} \left(D_q\right)^n\left[{\tilde w}(x;\beta q^n|q)\right] }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {\tilde w}(x;\beta|q):=\frac{w(x;\beta|q)}{\sqrt{1-x^2}}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle w(x):=w(x;\beta|q) =\left|\frac{\qPochhammer{\expe^{2\iunit\theta}}{q}{\infty}} {\qPochhammer{\beta^{\frac{1}{2}}\expe^{\iunit\theta},\beta^{\frac{1}{2}}q^{\frac{1}{2}}\expe^{\iunit\theta} -\beta^{\frac{1}{2}}\expe^{\iunit\theta},-\beta^{\frac{1}{2}}q^{\frac{1}{2}}\expe^{\iunit\theta}}{q}{\infty}}\right|^2 =\left|\frac{\qPochhammer{\expe^{2\iunit\theta}}{q}{\infty}}{\qPochhammer{\beta\expe^{2\iunit\theta}}{q}{\infty}}\right|^2 =\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}})} {h(x,\beta^{\frac{1}{2}})h(x,\beta^{\frac{1}{2}}q^{\frac{1}{2}}) h(x,-\beta^{\frac{1}{2}})h(x,-\beta^{\frac{1}{2}}q^{\frac{1}{2}})}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}\left(1-2\alpha xq^k+\alpha^2q^{2k}\right) =\qPochhammer{\alpha\expe^{\iunit\theta},\alpha\expe^{-\iunit\theta}}{q}{\infty}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle x=\cos@@{\theta}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C_{n}}}  : continuous Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -ultraspherical/Rogers polynomial : http://dlmf.nist.gov/18.28#E13
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle (a;q)_n}}  : Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Pi}}  : product : http://drmf.wmflabs.org/wiki/Definition:prod
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{cos}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.10 of KLS.

URL links

We ask users to provide relevant URL links in this space.