Results of Airy and Related Functions: Difference between revisions

From DRMF
Jump to navigation Jump to search
Created page with "{| class="wikitable sortable" |- ! DLMF !! Formula !! Maple !! Mathematica !! Symbolic<br>Maple !! Symbolic<br>Mathematica !! Numeric<br>Maple !! Numeric<br>Mathematica |- | [..."
 
No edit summary
 
Line 37: Line 37:
| [https://dlmf.nist.gov/9.2.E15 9.2.E15] || [[Item:Q2767|<math>\AiryBi@{-z} = e^{-\pi i/6}\AiryAi@{ze^{\pi i/3}}+e^{\pi i/6}\AiryAi@{ze^{-\pi i/3}}</math>]] || <code>AiryBi(- z)= exp(- Pi*I/ 6)*AiryAi(z*exp(Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(- Pi*I/ 3))</code> || <code>AiryBi[- z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[- Pi*I/ 3]]</code> || Failure || Successful || Successful || -  
| [https://dlmf.nist.gov/9.2.E15 9.2.E15] || [[Item:Q2767|<math>\AiryBi@{-z} = e^{-\pi i/6}\AiryAi@{ze^{\pi i/3}}+e^{\pi i/6}\AiryAi@{ze^{-\pi i/3}}</math>]] || <code>AiryBi(- z)= exp(- Pi*I/ 6)*AiryAi(z*exp(Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(- Pi*I/ 3))</code> || <code>AiryBi[- z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[- Pi*I/ 3]]</code> || Failure || Successful || Successful || -  
|-
|-
| [https://dlmf.nist.gov/9.5.E1 9.5.E1] || [[Item:Q2773|<math>\AiryAi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\cos@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryAi(x)=(1)/(Pi)*int(cos((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>AiryAi[x]=Divide[1,Pi]*Integrate[Cos[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.5.E1 9.5.E1] || [[Item:Q2773|<math>\AiryAi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\cos@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryAi(x)=(1)/(Pi)*int(cos((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>AiryAi[x]=Divide[1,Pi]*Integrate[Cos[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.5.E2 9.5.E2] || [[Item:Q2774|<math>\AiryAi@{-x} = \frac{x^{\ifrac{1}{2}}}{\pi}\int_{-1}^{\infty}\cos@{x^{\ifrac{3}{2}}(\tfrac{1}{3}t^{3}+t^{2}-\tfrac{2}{3})}\diff{t}</math>]] || <code>AiryAi(- x)=((x)^((1)/(2)))/(Pi)*int(cos((x)^((3)/(2))*((1)/(3)*(t)^(3)+ (t)^(2)-(2)/(3))), t = - 1..infinity)</code> || <code>AiryAi[- x]=Divide[(x)^(Divide[1,2]),Pi]*Integrate[Cos[(x)^(Divide[3,2])*(Divide[1,3]*(t)^(3)+ (t)^(2)-Divide[2,3])], {t, - 1, Infinity}]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.5.E2 9.5.E2] || [[Item:Q2774|<math>\AiryAi@{-x} = \frac{x^{\ifrac{1}{2}}}{\pi}\int_{-1}^{\infty}\cos@{x^{\ifrac{3}{2}}(\tfrac{1}{3}t^{3}+t^{2}-\tfrac{2}{3})}\diff{t}</math>]] || <code>AiryAi(- x)=((x)^((1)/(2)))/(Pi)*int(cos((x)^((3)/(2))*((1)/(3)*(t)^(3)+ (t)^(2)-(2)/(3))), t = - 1..infinity)</code> || <code>AiryAi[- x]=Divide[(x)^(Divide[1,2]),Pi]*Integrate[Cos[(x)^(Divide[3,2])*(Divide[1,3]*(t)^(3)+ (t)^(2)-Divide[2,3])], {t, - 1, Infinity}]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.5.E3 9.5.E3] || [[Item:Q2775|<math>\AiryBi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\exp@{-{\tfrac{1}{3}}t^{3}+xt}\diff{t}+\frac{1}{\pi}\int_{0}^{\infty}\sin@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryBi(x)=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ x*t), t = 0..infinity)+(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>AiryBi[x]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]+Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[AiryBi[x], Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[x]], Times[3, Power[x, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[x, 3]]]]]], Times[-1, Power[Pi, -1], Plus[Times[Rational[1, 3], Pi, AiryBi[x]], Times[Rational[-1, 2], Power[x, 2], HypergeometricPFQ[{1}, {Rational[2, 3], Rational[5, 6], Rational[7, 6], Rational[4, 3]}, Times[Rational[1, 1296], Power[x, 6]]]], Times[Rational[-1, 40], Power[x, 5], HypergeometricPFQ[{1}, {Rational[7, 6], Rational[4, 3], Rational[5, 3], Rational[11, 6]}, Times[Rational[1, 1296], Power[x, 6]]]]]]], And[Element[x, Reals], Less[Re[x], 0]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[AiryBi[x], Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[x]], Times[3, Power[x, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[x, 3]]]]]], Times[-1, Power[Pi, -1], Plus[Times[Rational[1, 3], Pi, AiryBi[x]], Times[Rational[-1, 2], Power[x, 2], HypergeometricPFQ[{1}, {Rational[2, 3], Rational[5, 6], Rational[7, 6], Rational[4, 3]}, Times[Rational[1, 1296], Power[x, 6]]]], Times[Rational[-1, 40], Power[x, 5], HypergeometricPFQ[{1}, {Rational[7, 6], Rational[4, 3], Rational[5, 3], Rational[11, 6]}, Times[Rational[1, 1296], Power[x, 6]]]]]]], And[Element[x, Reals], Less[Re[x], 0]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[AiryBi[x], Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[x]], Times[3, Power[x, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[x, 3]]]]]], Times[-1, Power[Pi, -1], Plus[Times[Rational[1, 3], Pi, AiryBi[x]], Times[Rational[-1, 2], Power[x, 2], HypergeometricPFQ[{1}, {Rational[2, 3], Rational[5, 6], Rational[7, 6], Rational[4, 3]}, Times[Rational[1, 1296], Power[x, 6]]]], Times[Rational[-1, 40], Power[x, 5], HypergeometricPFQ[{1}, {Rational[7, 6], Rational[4, 3], Rational[5, 3], Rational[11, 6]}, Times[Rational[1, 1296], Power[x, 6]]]]]]], And[Element[x, Reals], Less[Re[x], 0]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[AiryBi[x], Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[x]], Times[3, Power[x, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[x, 3]]]]]], Times[-1, Power[Pi, -1], Plus[Times[Rational[1, 3], Pi, AiryBi[x]], Times[Rational[-1, 2], Power[x, 2], HypergeometricPFQ[{1}, {Rational[2, 3], Rational[5, 6], Rational[7, 6], Rational[4, 3]}, Times[Rational[1, 1296], Power[x, 6]]]], Times[Rational[-1, 40], Power[x, 5], HypergeometricPFQ[{1}, {Rational[7, 6], Rational[4, 3], Rational[5, 3], Rational[11, 6]}, Times[Rational[1, 1296], Power[x, 6]]]]]]], And[Element[x, Reals], Less[Re[x], 0]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.5.E3 9.5.E3] || [[Item:Q2775|<math>\AiryBi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\exp@{-{\tfrac{1}{3}}t^{3}+xt}\diff{t}+\frac{1}{\pi}\int_{0}^{\infty}\sin@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryBi(x)=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ x*t), t = 0..infinity)+(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>AiryBi[x]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]+Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.5.E4 9.5.E4] || [[Item:Q2776|<math>\AiryAi@{z} = \frac{1}{2\pi i}\int_{\infty e^{-\pi i/3}}^{\infty e^{\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}</math>]] || <code>AiryAi(z)=(1)/(2*Pi*I)*int(exp((1)/(3)*(t)^(3)- z*t), t = infinity*exp(- Pi*I/ 3)..infinity*exp(Pi*I/ 3))</code> || <code>AiryAi[z]=Divide[1,2*Pi*I]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, Infinity*Exp[- Pi*I/ 3], Infinity*Exp[Pi*I/ 3]}]</code> || Failure || Failure || Skip || Error
| [https://dlmf.nist.gov/9.5.E4 9.5.E4] || [[Item:Q2776|<math>\AiryAi@{z} = \frac{1}{2\pi i}\int_{\infty e^{-\pi i/3}}^{\infty e^{\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}</math>]] || <code>AiryAi(z)=(1)/(2*Pi*I)*int(exp((1)/(3)*(t)^(3)- z*t), t = infinity*exp(- Pi*I/ 3)..infinity*exp(Pi*I/ 3))</code> || <code>AiryAi[z]=Divide[1,2*Pi*I]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, Infinity*Exp[- Pi*I/ 3], Infinity*Exp[Pi*I/ 3]}]</code> || Failure || Failure || Skip || Skip
|-
|-
| [https://dlmf.nist.gov/9.5.E5 9.5.E5] || [[Item:Q2777|<math>\AiryBi@{z} = \frac{1}{2\pi}\int_{-\infty}^{\infty e^{\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}+\dfrac{1}{2\pi}\int_{-\infty}^{\infty e^{-\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}</math>]] || <code>AiryBi(z)=(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(Pi*I/ 3))+(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(- Pi*I/ 3))</code> || <code>AiryBi[z]=Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[Pi*I/ 3]}]+Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[- Pi*I/ 3]}]</code> || Failure || Failure || Skip || Error
| [https://dlmf.nist.gov/9.5.E5 9.5.E5] || [[Item:Q2777|<math>\AiryBi@{z} = \frac{1}{2\pi}\int_{-\infty}^{\infty e^{\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}+\dfrac{1}{2\pi}\int_{-\infty}^{\infty e^{-\pi i/3}}\exp@{\tfrac{1}{3}t^{3}-zt}\diff{t}</math>]] || <code>AiryBi(z)=(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(Pi*I/ 3))+(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(- Pi*I/ 3))</code> || <code>AiryBi[z]=Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[Pi*I/ 3]}]+Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[- Pi*I/ 3]}]</code> || Failure || Failure || Skip || Skip
|-
|-
| [https://dlmf.nist.gov/9.5.E6 9.5.E6] || [[Item:Q2778|<math>\AiryAi@{z} = \frac{\sqrt{3}}{2\pi}\int_{0}^{\infty}\exp@{-\frac{t^{3}}{3}-\frac{z^{3}}{3t^{3}}}\diff{t}</math>]] || <code>AiryAi(z)=(sqrt(3))/(2*Pi)*int(exp(-((t)^(3))/(3)-((z)^(3))/(3*(t)^(3))), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Sqrt[3],2*Pi]*Integrate[Exp[-Divide[(t)^(3),3]-Divide[(z)^(3),3*(t)^(3)]], {t, 0, Infinity}]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.5.E6 9.5.E6] || [[Item:Q2778|<math>\AiryAi@{z} = \frac{\sqrt{3}}{2\pi}\int_{0}^{\infty}\exp@{-\frac{t^{3}}{3}-\frac{z^{3}}{3t^{3}}}\diff{t}</math>]] || <code>AiryAi(z)=(sqrt(3))/(2*Pi)*int(exp(-((t)^(3))/(3)-((z)^(3))/(3*(t)^(3))), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Sqrt[3],2*Pi]*Integrate[Exp[-Divide[(t)^(3),3]-Divide[(z)^(3),3*(t)^(3)]], {t, 0, Infinity}]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.5.E7 9.5.E7] || [[Item:Q2779|<math>\AiryAi@{z} = \frac{e^{-\zeta}}{\pi}\int_{0}^{\infty}\exp@{-z^{\ifrac{1}{2}}t^{2}}\cos@{\tfrac{1}{3}t^{3}}\diff{t}</math>]] || <code>AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2))))/(Pi)*int(exp(- (z)^((1)/(2))* (t)^(2))*cos((1)/(3)*(t)^(3)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])],Pi]*Integrate[Exp[- (z)^(Divide[1,2])* (t)^(2)]*Cos[Divide[1,3]*(t)^(3)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
| [https://dlmf.nist.gov/9.5.E7 9.5.E7] || [[Item:Q2779|<math>\AiryAi@{z} = \frac{e^{-\zeta}}{\pi}\int_{0}^{\infty}\exp@{-z^{\ifrac{1}{2}}t^{2}}\cos@{\tfrac{1}{3}t^{3}}\diff{t}</math>]] || <code>AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2))))/(Pi)*int(exp(- (z)^((1)/(2))* (t)^(2))*cos((1)/(3)*(t)^(3)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])],Pi]*Integrate[Exp[- (z)^(Divide[1,2])* (t)^(2)]*Cos[Divide[1,3]*(t)^(3)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Skip
|-
|-
| [https://dlmf.nist.gov/9.5.E8 9.5.E8] || [[Item:Q2780|<math>\AiryAi@{z} = \frac{e^{-\zeta}\zeta^{\ifrac{-1}{6}}}{\sqrt{\pi}(48)^{\ifrac{1}{6}}\EulerGamma@{\frac{5}{6}}}\int_{0}^{\infty}e^{-t}t^{-\ifrac{1}{6}}\left(2+\frac{t}{\zeta}\right)^{-\ifrac{1}{6}}\diff{t}</math>]] || <code>AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2)))*(2)/(3)*((z)^((3)/(2)))^((- 1)/(6)))/(sqrt(Pi)*(48)^((1)/(6))* GAMMA((5)/(6)))*int(exp(- t)*(t)^(-(1)/(6))*(2 +(t)/((2)/(3)*(z)^((3)/(2))))^(-(1)/(6)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])]*Divide[2,3]*((z)^(Divide[3,2]))^(Divide[- 1,6]),Sqrt[Pi]*(48)^(Divide[1,6])* Gamma[Divide[5,6]]]*Integrate[Exp[- t]*(t)^(-Divide[1,6])*(2 +Divide[t,Divide[2,3]*(z)^(Divide[3,2])])^(-Divide[1,6]), {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error
| [https://dlmf.nist.gov/9.5.E8 9.5.E8] || [[Item:Q2780|<math>\AiryAi@{z} = \frac{e^{-\zeta}\zeta^{\ifrac{-1}{6}}}{\sqrt{\pi}(48)^{\ifrac{1}{6}}\EulerGamma@{\frac{5}{6}}}\int_{0}^{\infty}e^{-t}t^{-\ifrac{1}{6}}\left(2+\frac{t}{\zeta}\right)^{-\ifrac{1}{6}}\diff{t}</math>]] || <code>AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2)))*(2)/(3)*((z)^((3)/(2)))^((- 1)/(6)))/(sqrt(Pi)*(48)^((1)/(6))* GAMMA((5)/(6)))*int(exp(- t)*(t)^(-(1)/(6))*(2 +(t)/((2)/(3)*(z)^((3)/(2))))^(-(1)/(6)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])]*Divide[2,3]*((z)^(Divide[3,2]))^(Divide[- 1,6]),Sqrt[Pi]*(48)^(Divide[1,6])* Gamma[Divide[5,6]]]*Integrate[Exp[- t]*(t)^(-Divide[1,6])*(2 +Divide[t,Divide[2,3]*(z)^(Divide[3,2])])^(-Divide[1,6]), {t, 0, Infinity}]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.014252654553766713, -0.04024893384084034] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.014252654553766713, 0.04024893384084034] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta}</math>]] || <code>AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))</code> || <code>AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta}</math>]] || <code>AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))</code> || <code>AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
Line 61: Line 61:
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)</math>]] || <code>(Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>(Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)</math>]] || <code>(Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>(Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Successful || Successful || - || -  
|-
|-
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-2.8337652800788247, 0.30394618618023783] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[2.8337652800788256, -0.3039461861802379] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.8337652800788247, -0.3039461861802372] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E2 9.6.E2] || [[Item:Q2782|<math>\tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta}</math>]] || <code>subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))</code> || <code>(D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta}</math>]] || <code>subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))</code> || <code>(D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
Line 77: Line 77:
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>-\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)</math>]] || <code>- (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>- (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>-\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)</math>]] || <code>- (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>- (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Successful || Successful || - || -  
|-
|-
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>(z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>(z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.7883076520663918, -3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.7883076520663909, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.7883076520663926, 3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E3 9.6.E3] || [[Item:Q2783|<math>\tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta e^{-\pi i/2}}</math>]] || <code>(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))</code> || <code>Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\AiryBi@{z} = \sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right)</math>]] || <code>AiryBi(z)=sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>AiryBi[z]=Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.323091265e-1+.116725832*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>.323091265e-1-.116725832*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.032309126109843156, 0.11672583064563491] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.032309126109843156, -0.11672583064563491] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\AiryBi@{z} = \sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right)</math>]] || <code>AiryBi(z)=sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>AiryBi[z]=Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.323091265e-1+.116725832*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>.323091265e-1-.116725832*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.032309126109843156, 0.11672583064563491] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.032309126109843156, -0.11672583064563491] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
Line 89: Line 89:
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.1681276560-1.475245556*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.1681276560+1.475245556*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.16812765614504083, -1.4752455553622306] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.16812765614504083, 1.4752455553622306] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.1681276560-1.475245556*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.1681276560+1.475245556*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.16812765614504083, -1.4752455553622306] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.16812765614504083, 1.4752455553622306] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E4 9.6.E4] || [[Item:Q2784|<math>\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>\AiryBi'@{z} = (z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right)</math>]] || <code>subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>(D[AiryBi[temp], {temp, 1}]/.temp-> z)=(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.181539689+.267445042e-1*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>.181539689-.267445042e-1*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.18153969005752768, 0.026744504839266825] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.18153969005752768, -0.026744504839266825] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>\AiryBi'@{z} = (z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right)</math>]] || <code>subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>(D[AiryBi[temp], {temp, 1}]/.temp-> z)=(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.181539689+.267445042e-1*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>.181539689-.267445042e-1*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.18153969005752768, 0.026744504839266825] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.18153969005752768, -0.026744504839266825] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
Line 95: Line 95:
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>(z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>1.652162135+.3807815744*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>1.652162135-.3807815744*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.6521621352721998, 0.3807815736135619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.6521621352721998, -0.3807815736135619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>(z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>1.652162135+.3807815744*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>1.652162135-.3807815744*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.6521621352721998, 0.3807815736135619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.6521621352721998, -0.3807815736135619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.6.E5 9.6.E5] || [[Item:Q2785|<math>\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta e^{\pi i/2}}\right)</math>]] || <code>(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))</code> || <code>Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.6.E6 9.6.E6] || [[Item:Q2786|<math>\AiryAi@{-z} = (\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right)</math>]] || <code>AiryAi(- z)=(sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>AiryAi[- z]=(Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.5274645816-.7652257224e-1*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.5274645816+.7652257224e-1*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.5274645818155765, -0.0765225723412053] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.5274645818155765, 0.0765225723412053] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.6.E6 9.6.E6] || [[Item:Q2786|<math>\AiryAi@{-z} = (\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right)</math>]] || <code>AiryAi(- z)=(sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2))))</code> || <code>AiryAi[- z]=(Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.5274645816-.7652257224e-1*I <- {z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.5274645816+.7652257224e-1*I <- {z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.5274645818155765, -0.0765225723412053] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.5274645818155765, 0.0765225723412053] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
Line 205: Line 205:
| [https://dlmf.nist.gov/9.8.E8 9.8.E8] || [[Item:Q2840|<math>\Airyphasederivphi@{x} = \atan@{\AiryAi'@{x}/\AiryBi'@{x}}</math>]] || <code>arctan(AiryAi(1, x)/AiryBi(1, x))= arctan(subs( temp=x, diff( AiryAi(temp), temp$(1) ) )/ subs( temp=x, diff( AiryBi(temp), temp$(1) ) ))</code> || <code>ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]= ArcTan[(D[AiryAi[temp], {temp, 1}]/.temp-> x)/ (D[AiryBi[temp], {temp, 1}]/.temp-> x)]</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.8.E8 9.8.E8] || [[Item:Q2840|<math>\Airyphasederivphi@{x} = \atan@{\AiryAi'@{x}/\AiryBi'@{x}}</math>]] || <code>arctan(AiryAi(1, x)/AiryBi(1, x))= arctan(subs( temp=x, diff( AiryAi(temp), temp$(1) ) )/ subs( temp=x, diff( AiryBi(temp), temp$(1) ) ))</code> || <code>ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]= ArcTan[(D[AiryAi[temp], {temp, 1}]/.temp-> x)/ (D[AiryBi[temp], {temp, 1}]/.temp-> x)]</code> || Successful || Successful || - || -  
|-
|-
| [https://dlmf.nist.gov/9.8.E9 9.8.E9] || [[Item:Q2841|<math>|x|^{1/2}\AirymodM^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{1/3}^{2}@{\xi}+\BesselY{1/3}^{2}@{\xi}\right)</math>]] || <code>(abs(x))^(1/ 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)=(1)/(2)*xi*((BesselJ(1/ 3, xi))^(2)+ (BesselY(1/ 3, xi))^(2))</code> || <code>(Abs[x])^(1/ 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[1/ 3, \[Xi]])^(2)+ (BesselY[1/ 3, \[Xi]])^(2))</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>1.159089025-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>15.06764807-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>340.9777186-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>1.159089025+.4715106810e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br><code>15.06764807+.4715106810e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 2}</code><br><code>340.9777186+.4715106810e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 3}</code><br><code>1.152932431-.2158756202e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 1}</code><br><code>15.06149147-.2158756202e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 2}</code><br><code>340.9715621-.2158756202e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 3}</code><br><code>1.152932431+.2158756202e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 1}</code><br><code>15.06149147+.2158756202e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 2}</code><br><code>340.9715621+.2158756202e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.1590890245070966, -0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[15.06764807713232, -0.004715107328741586] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[340.9777188366776, -0.004715107328741586] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.1590890245070966, 0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[15.06764807713232, 0.004715107328741586] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[340.9777188366776, 0.004715107328741586] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.1529324301847828, -0.021587562167012547] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[15.061491482810007, -0.021587562167012547] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[340.9715622423553, -0.021587562167012547] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.1529324301847828, 0.021587562167012547] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[15.061491482810007, 0.021587562167012547] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[340.9715622423553, 0.021587562167012547] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.8.E9 9.8.E9] || [[Item:Q2841|<math>|x|^{1/2}\AirymodM^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{1/3}^{2}@{\xi}+\BesselY{1/3}^{2}@{\xi}\right)</math>]] || <code>(abs(x))^(1/ 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)=(1)/(2)*xi*((BesselJ(1/ 3, xi))^(2)+ (BesselY(1/ 3, xi))^(2))</code> || <code>(Abs[x])^(1/ 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[1/ 3, \[Xi]])^(2)+ (BesselY[1/ 3, \[Xi]])^(2))</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>1.159089025-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>15.06764807-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>340.9777186-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>1.159089025+.4715106810e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br>... skip entries to safe data<br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.1590890245070966, -0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[15.06764807713232, -0.004715107328741586] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[340.9777188366776, -0.004715107328741586] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.1590890245070966, 0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br>... skip entries to safe data<br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.8.E10 9.8.E10] || [[Item:Q2842|<math>|x|^{-1/2}\AirymodderivN^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{2/3}^{2}@{\xi}+\BesselY{2/3}^{2}@{\xi}\right)</math>]] || <code>(abs(x))^(- 1/ 2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)=(1)/(2)*xi*((BesselJ(2/ 3, xi))^(2)+ (BesselY(2/ 3, xi))^(2))</code> || <code>(Abs[x])^(- 1/ 2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[2/ 3, \[Xi]])^(2)+ (BesselY[2/ 3, \[Xi]])^(2))</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.5749530917+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>11.57260149+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>303.0362324+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>.5749530917-.6794393049e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br><code>11.57260149-.6794393049e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 2}</code><br><code>303.0362324-.6794393049e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 3}</code><br><code>.5801544350+.2618733010e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 1}</code><br><code>11.57780284+.2618733010e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 2}</code><br><code>303.0414338+.2618733010e-1*I <- {xi = -2^(1/2)-I*2^(1/2), x = 3}</code><br><code>.5801544350-.2618733010e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 1}</code><br><code>11.57780284-.2618733010e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 2}</code><br><code>303.0414338-.2618733010e-1*I <- {xi = -2^(1/2)+I*2^(1/2), x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.5749530907924223, 0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[11.572601490351364, 0.0067943920267909685] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[303.0362323510325, 0.0067943920267909685] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.5749530907924223, -0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[11.572601490351364, -0.0067943920267909685] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[303.0362323510325, -0.0067943920267909685] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.5801544351344989, 0.026187329972932327] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[11.57780283469344, 0.026187329972932327] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[303.0414336953745, 0.026187329972932327] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.5801544351344989, -0.026187329972932327] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[11.57780283469344, -0.026187329972932327] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[303.0414336953745, -0.026187329972932327] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.8.E10 9.8.E10] || [[Item:Q2842|<math>|x|^{-1/2}\AirymodderivN^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{2/3}^{2}@{\xi}+\BesselY{2/3}^{2}@{\xi}\right)</math>]] || <code>(abs(x))^(- 1/ 2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)=(1)/(2)*xi*((BesselJ(2/ 3, xi))^(2)+ (BesselY(2/ 3, xi))^(2))</code> || <code>(Abs[x])^(- 1/ 2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[2/ 3, \[Xi]])^(2)+ (BesselY[2/ 3, \[Xi]])^(2))</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.5749530917+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>11.57260149+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>303.0362324+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>.5749530917-.6794393049e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br>... skip entries to safe data<br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.5749530907924223, 0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[11.572601490351364, 0.0067943920267909685] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[303.0362323510325, 0.0067943920267909685] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.5749530907924223, -0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br>... skip entries to safe data<br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.8.E11 9.8.E11] || [[Item:Q2843|<math>\Airyphasetheta@{x} = \tfrac{2}{3}\pi+\atan@{\BesselY{1/3}@{\xi}/\BesselJ{1/3}@{\xi}}</math>]] || <code>arctan(AiryAi(x)/AiryBi(x))=(2)/(3)*Pi + arctan(BesselY(1/ 3, xi)/ BesselJ(1/ 3, xi))</code> || <code>ArcTan[Divide[AiryAi[x], AiryBi[x]]]=Divide[2,3]*Pi + ArcTan[BesselY[1/ 3, \[Xi]]/ BesselJ[1/ 3, \[Xi]]]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-2.062235934-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-2.163232204-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-2.173351447-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>-2.062235934+1.435552558*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br><code>-2.163232204+1.435552558*I <- {xi = 2^(1/2)-I*2^(1/2), x = 2}</code><br><code>-2.173351447+1.435552558*I <- {xi = 2^(1/2)-I*2^(1/2), x = 3}</code><br><code>-2.452891048+1.446224854*I <- {xi = -2^(1/2)-I*2^(1/2), x = 1}</code><br><code>-2.553887318+1.446224854*I <- {xi = -2^(1/2)-I*2^(1/2), x = 2}</code><br><code>-2.564006561+1.446224854*I <- {xi = -2^(1/2)-I*2^(1/2), x = 3}</code><br><code>-2.452891048-1.446224854*I <- {xi = -2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-2.553887318-1.446224854*I <- {xi = -2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-2.564006561-1.446224854*I <- {xi = -2^(1/2)+I*2^(1/2), x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-2.062235934109286, -1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.163232204380712, -1.435552557338311] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.17335144762396, -1.435552557338311] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.062235934109286, 1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.163232204380712, 1.435552557338311] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.17335144762396, 1.435552557338311] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.4528910462808704, 1.446224854011234] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.5538873165522964, 1.446224854011234] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.564006559795544, 1.446224854011234] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.4528910462808704, -1.446224854011234] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.5538873165522964, -1.446224854011234] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.564006559795544, -1.446224854011234] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.8.E11 9.8.E11] || [[Item:Q2843|<math>\Airyphasetheta@{x} = \tfrac{2}{3}\pi+\atan@{\BesselY{1/3}@{\xi}/\BesselJ{1/3}@{\xi}}</math>]] || <code>arctan(AiryAi(x)/AiryBi(x))=(2)/(3)*Pi + arctan(BesselY(1/ 3, xi)/ BesselJ(1/ 3, xi))</code> || <code>ArcTan[Divide[AiryAi[x], AiryBi[x]]]=Divide[2,3]*Pi + ArcTan[BesselY[1/ 3, \[Xi]]/ BesselJ[1/ 3, \[Xi]]]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-2.062235934-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-2.163232204-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-2.173351447-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>-2.062235934+1.435552558*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br>... skip entries to safe data<br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-2.062235934109286, -1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.163232204380712, -1.435552557338311] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.17335144762396, -1.435552557338311] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-2.062235934109286, 1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br>... skip entries to safe data<br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.8.E12 9.8.E12] || [[Item:Q2844|<math>\Airyphasederivphi@{x} = \tfrac{1}{3}\pi+\atan@{\BesselY{2/3}@{\xi}/\BesselJ{2/3}@{\xi}}</math>]] || <code>arctan(AiryAi(1, x)/AiryBi(1, x))=(1)/(3)*Pi + arctan(BesselY(2/ 3, xi)/ BesselJ(2/ 3, xi))</code> || <code>ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]=Divide[1,3]*Pi + ArcTan[BesselY[2/ 3, \[Xi]]/ BesselJ[2/ 3, \[Xi]]]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.8340487847-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-.6779445534-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-.6655182693-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>-.8340487847+1.384157839*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br><code>-.6779445534+1.384157839*I <- {xi = 2^(1/2)-I*2^(1/2), x = 2}</code><br><code>-.6655182693+1.384157839*I <- {xi = 2^(1/2)-I*2^(1/2), x = 3}</code><br><code>-1.043945925+1.377572426*I <- {xi = -2^(1/2)-I*2^(1/2), x = 1}</code><br><code>-.8878416937+1.377572426*I <- {xi = -2^(1/2)-I*2^(1/2), x = 2}</code><br><code>-.8754154096+1.377572426*I <- {xi = -2^(1/2)-I*2^(1/2), x = 3}</code><br><code>-1.043945925-1.377572426*I <- {xi = -2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-.8878416937-1.377572426*I <- {xi = -2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-.8754154096-1.377572426*I <- {xi = -2^(1/2)+I*2^(1/2), x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.8340487867218234, -1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6779445554392751, -1.3841578383770126] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6655182713247128, -1.3841578383770126] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8340487867218234, 1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6779445554392751, 1.3841578383770126] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6655182713247128, 1.3841578383770126] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.0439459252817185, 1.377572426699353] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8878416939991702, 1.377572426699353] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8754154098846079, 1.377572426699353] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.0439459252817185, -1.377572426699353] <- {Rule[x, 1], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8878416939991702, -1.377572426699353] <- {Rule[x, 2], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8754154098846079, -1.377572426699353] <- {Rule[x, 3], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>  
| [https://dlmf.nist.gov/9.8.E12 9.8.E12] || [[Item:Q2844|<math>\Airyphasederivphi@{x} = \tfrac{1}{3}\pi+\atan@{\BesselY{2/3}@{\xi}/\BesselJ{2/3}@{\xi}}</math>]] || <code>arctan(AiryAi(1, x)/AiryBi(1, x))=(1)/(3)*Pi + arctan(BesselY(2/ 3, xi)/ BesselJ(2/ 3, xi))</code> || <code>ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]=Divide[1,3]*Pi + ArcTan[BesselY[2/ 3, \[Xi]]/ BesselJ[2/ 3, \[Xi]]]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.8340487847-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>-.6779445534-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>-.6655182693-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>-.8340487847+1.384157839*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}</code><br>... skip entries to safe data<br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.8340487867218234, -1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6779445554392751, -1.3841578383770126] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.6655182713247128, -1.3841578383770126] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.8340487867218234, 1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br>... skip entries to safe data<br></div></div>  
|-
|-
| [https://dlmf.nist.gov/9.8.E13 9.8.E13] || [[Item:Q2845|<math>\AirymodM@{x}\AirymodderivN@{x}\sin@{\Airyphasetheta@{x}-\Airyphasederivphi@{x}} = \pi^{-1}</math>]] || <code>sqrt(AiryAi(x)^2+AiryBi(x)^2)*sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x)))= (Pi)^(- 1)</code> || <code>Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]= (Pi)^(- 1)</code> || Failure || Failure || Successful || Successful  
| [https://dlmf.nist.gov/9.8.E13 9.8.E13] || [[Item:Q2845|<math>\AirymodM@{x}\AirymodderivN@{x}\sin@{\Airyphasetheta@{x}-\Airyphasederivphi@{x}} = \pi^{-1}</math>]] || <code>sqrt(AiryAi(x)^2+AiryBi(x)^2)*sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x)))= (Pi)^(- 1)</code> || <code>Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]= (Pi)^(- 1)</code> || Failure || Failure || Successful || Successful  
Line 239: Line 239:
| [https://dlmf.nist.gov/9.8.E19 9.8.E19] || [[Item:Q2854|<math>\Airyphasetheta'^{2}@{x}+\tfrac{1}{2}(\Airyphasetheta'''@{x}/\Airyphasetheta'@{x})-\tfrac{3}{4}(\Airyphasetheta''@{x}/\Airyphasetheta'@{x})^{2} = -x</math>]] || <code>(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)+(1)/(2)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(3) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))-(3)/(4)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(2) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)= - x</code> || <code>((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))^(2)+Divide[1,2]*((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 3}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))-Divide[3,4]*(((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 2}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x)))^(2)= - x</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.8.E19 9.8.E19] || [[Item:Q2854|<math>\Airyphasetheta'^{2}@{x}+\tfrac{1}{2}(\Airyphasetheta'''@{x}/\Airyphasetheta'@{x})-\tfrac{3}{4}(\Airyphasetheta''@{x}/\Airyphasetheta'@{x})^{2} = -x</math>]] || <code>(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)+(1)/(2)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(3) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))-(3)/(4)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(2) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)= - x</code> || <code>((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))^(2)+Divide[1,2]*((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 3}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))-Divide[3,4]*(((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 2}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x)))^(2)= - x</code> || Successful || Successful || - || -  
|-
|-
| [https://dlmf.nist.gov/9.10.E1 9.10.E1] || [[Item:Q2883|<math>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</math>]] || <code>int(AiryAi(t), t = z..infinity)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))</code> || <code>Integrate[AiryAi[t], {t, z, Infinity}]= Pi*(AiryAi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z])</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[1, 18], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[-1, Pi, Plus[Times[-1, AiryAiPrime[z], ScorerGi[z]], Times[AiryAi[z], ScorerGiPrime[z]]]]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[1, 18], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[-1, Pi, Plus[Times[-1, AiryAiPrime[z], ScorerGi[z]], Times[AiryAi[z], ScorerGiPrime[z]]]]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[1, 18], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[-1, Pi, Plus[Times[-1, AiryAiPrime[z], ScorerGi[z]], Times[AiryAi[z], ScorerGiPrime[z]]]]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[1, 18], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[-1, Pi, Plus[Times[-1, AiryAiPrime[z], ScorerGi[z]], Times[AiryAi[z], ScorerGiPrime[z]]]]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.10.E1 9.10.E1] || [[Item:Q2883|<math>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</math>]] || <code>int(AiryAi(t), t = z..infinity)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))</code> || <code>Integrate[AiryAi[t], {t, z, Infinity}]= Pi*(AiryAi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z])</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E2 9.10.E2] || [[Item:Q2884|<math>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</math>]] || <code>int(AiryAi(t), t = - infinity..z)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</code> || <code>Integrate[AiryAi[t], {t, - Infinity, z}]= Pi*(AiryAi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z])</code> || Failure || Failure || Skip || Successful  
| [https://dlmf.nist.gov/9.10.E2 9.10.E2] || [[Item:Q2884|<math>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</math>]] || <code>int(AiryAi(t), t = - infinity..z)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</code> || <code>Integrate[AiryAi[t], {t, - Infinity, z}]= Pi*(AiryAi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z])</code> || Failure || Failure || Skip || Successful  
|-
|-
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>int(AiryBi(t), t = - infinity..z)= int(AiryBi(t), t = 0..z)</code> || <code>Integrate[AiryBi[t], {t, - Infinity, z}]= Integrate[AiryBi[t], {t, 0, z}]</code> || Successful || Failure || - || Skip
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>int(AiryBi(t), t = - infinity..z)= int(AiryBi(t), t = 0..z)</code> || <code>Integrate[AiryBi[t], {t, - Infinity, z}]= Integrate[AiryBi[t], {t, 0, z}]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</math>]] || <code>Pi*(subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) ))= Pi*(AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</code> || <code>Pi*((D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z]- AiryBi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z))= Pi*(AiryBi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z])</code> || Error || Error || - || -  
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</math>]] || <code>Pi*(subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) ))= Pi*(AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</code> || <code>Pi*((D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z]- AiryBi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z))= Pi*(AiryBi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z])</code> || Error || Error || - || -  
Line 249: Line 249:
| [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] || [[Item:Q2893|<math>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</math>]] || <code>int(AiryAi(t), t = 0..infinity)=(1)/(3)</code> || <code>Integrate[AiryAi[t], {t, 0, Infinity}]=Divide[1,3]</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] || [[Item:Q2893|<math>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</math>]] || <code>int(AiryAi(t), t = 0..infinity)=(1)/(3)</code> || <code>Integrate[AiryAi[t], {t, 0, Infinity}]=Divide[1,3]</code> || Successful || Successful || - || -  
|-
|-
| [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] || [[Item:Q2894|<math>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</math>]] || <code>int(AiryAi(t), t = - infinity..0)=(2)/(3)</code> || <code>Integrate[AiryAi[t], {t, - Infinity, 0}]=Divide[2,3]</code> || Successful || Failure || - || Error
| [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] || [[Item:Q2894|<math>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</math>]] || <code>int(AiryAi(t), t = - infinity..0)=(2)/(3)</code> || <code>Integrate[AiryAi[t], {t, - Infinity, 0}]=Divide[2,3]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E12 9.10.E12] || [[Item:Q2895|<math>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</math>]] || <code>int(AiryBi(t), t = - infinity..0)= 0</code> || <code>Integrate[AiryBi[t], {t, - Infinity, 0}]= 0</code> || Successful || Failure || - || Error
| [https://dlmf.nist.gov/9.10.E12 9.10.E12] || [[Item:Q2895|<math>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</math>]] || <code>int(AiryBi(t), t = - infinity..0)= 0</code> || <code>Integrate[AiryBi[t], {t, - Infinity, 0}]= 0</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E13 9.10.E13] || [[Item:Q2896|<math>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</math>]] || <code>int(exp(p*t)*AiryAi(t), t = - infinity..infinity)= exp((p)^(3)/ 3)</code> || <code>Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}]= Exp[(p)^(3)/ 3]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.10.E13 9.10.E13] || [[Item:Q2896|<math>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</math>]] || <code>int(exp(p*t)*AiryAi(t), t = - infinity..infinity)= exp((p)^(3)/ 3)</code> || <code>Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}]= Exp[(p)^(3)/ 3]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.10.E14 9.10.E14] || [[Item:Q2897|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</math>]] || <code>int(exp(- p*t)*AiryAi(t), t = 0..infinity)= exp(- (p)^(3)/ 3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/ 3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/ 3)* GAMMA((5)/(3))))</code> || <code>Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}]= Exp[- (p)^(3)/ 3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/ 3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/ 3)* Gamma[Divide[5,3]]])</code> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[p, Complex[1, 1]], Rule[ConditionalExpression[Plus[Times[Rational[1, 6], Power[E, Times[Rational[-1, 3], Power[p, 3]]], Power[p, -2], Power[Pi, -1], Plus[Times[2, Plus[Power[p, 2], Times[-1, p, Power[Times[-1, Power[p, 3]], Rational[1, 3]]], Power[Times[-1, Power[p, 3]], Rational[2, 3]]], Pi], Times[-1, Power[3, Rational[-1, 6]], Power[p, 4], ExpIntegralE[Rational[1, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[1, 3]]], Times[Power[3, Rational[1, 6]], Power[p, 3], ExpIntegralE[Rational[2, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[2, 3]]]]], Times[-1, Power[E, Times[Rational[-1, 3], Power[p, 3]]], Plus[Rational[1, 3], Times[Rational[-1, 9], p, Power[Times[-1, Power[p, 3]], Rational[-1, 3]], Power[Gamma[Rational[4, 3]], -1], Gamma[Rational[1, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]], Times[Rational[2, 9], Power[p, 2], Power[Times[-1, Power[p, 3]], Rational[-2, 3]], Power[Gamma[Rational[5, 3]], -1], Gamma[Rational[2, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]]]]], Greater[Re[p], 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[p, Complex[1, 1]], Rule[ConditionalExpression[Plus[Times[Rational[1, 6], Power[E, Times[Rational[-1, 3], Power[p, 3]]], Power[p, -2], Power[Pi, -1], Plus[Times[2, Plus[Power[p, 2], Times[-1, p, Power[Times[-1, Power[p, 3]], Rational[1, 3]]], Power[Times[-1, Power[p, 3]], Rational[2, 3]]], Pi], Times[-1, Power[3, Rational[-1, 6]], Power[p, 4], ExpIntegralE[Rational[1, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[1, 3]]], Times[Power[3, Rational[1, 6]], Power[p, 3], ExpIntegralE[Rational[2, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[2, 3]]]]], Times[-1, Power[E, Times[Rational[-1, 3], Power[p, 3]]], Plus[Rational[1, 3], Times[Rational[-1, 9], p, Power[Times[-1, Power[p, 3]], Rational[-1, 3]], Power[Gamma[Rational[4, 3]], -1], Gamma[Rational[1, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]], Times[Rational[2, 9], Power[p, 2], Power[Times[-1, Power[p, 3]], Rational[-2, 3]], Power[Gamma[Rational[5, 3]], -1], Gamma[Rational[2, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]]]]], Greater[Re[p], 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[p, Complex[1, 1]], Rule[ConditionalExpression[Plus[Times[Rational[1, 6], Power[E, Times[Rational[-1, 3], Power[p, 3]]], Power[p, -2], Power[Pi, -1], Plus[Times[2, Plus[Power[p, 2], Times[-1, p, Power[Times[-1, Power[p, 3]], Rational[1, 3]]], Power[Times[-1, Power[p, 3]], Rational[2, 3]]], Pi], Times[-1, Power[3, Rational[-1, 6]], Power[p, 4], ExpIntegralE[Rational[1, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[1, 3]]], Times[Power[3, Rational[1, 6]], Power[p, 3], ExpIntegralE[Rational[2, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[2, 3]]]]], Times[-1, Power[E, Times[Rational[-1, 3], Power[p, 3]]], Plus[Rational[1, 3], Times[Rational[-1, 9], p, Power[Times[-1, Power[p, 3]], Rational[-1, 3]], Power[Gamma[Rational[4, 3]], -1], Gamma[Rational[1, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]], Times[Rational[2, 9], Power[p, 2], Power[Times[-1, Power[p, 3]], Rational[-2, 3]], Power[Gamma[Rational[5, 3]], -1], Gamma[Rational[2, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]]]]], Greater[Re[p], 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[p, Complex[1, 1]], Rule[ConditionalExpression[Plus[Times[Rational[1, 6], Power[E, Times[Rational[-1, 3], Power[p, 3]]], Power[p, -2], Power[Pi, -1], Plus[Times[2, Plus[Power[p, 2], Times[-1, p, Power[Times[-1, Power[p, 3]], Rational[1, 3]]], Power[Times[-1, Power[p, 3]], Rational[2, 3]]], Pi], Times[-1, Power[3, Rational[-1, 6]], Power[p, 4], ExpIntegralE[Rational[1, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[1, 3]]], Times[Power[3, Rational[1, 6]], Power[p, 3], ExpIntegralE[Rational[2, 3], Times[Rational[-1, 3], Power[p, 3]]], Gamma[Rational[2, 3]]]]], Times[-1, Power[E, Times[Rational[-1, 3], Power[p, 3]]], Plus[Rational[1, 3], Times[Rational[-1, 9], p, Power[Times[-1, Power[p, 3]], Rational[-1, 3]], Power[Gamma[Rational[4, 3]], -1], Gamma[Rational[1, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]], Times[Rational[2, 9], Power[p, 2], Power[Times[-1, Power[p, 3]], Rational[-2, 3]], Power[Gamma[Rational[5, 3]], -1], Gamma[Rational[2, 3], 0, Times[Rational[-1, 3], Power[p, 3]]]]]]], Greater[Re[p], 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.10.E14 9.10.E14] || [[Item:Q2897|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</math>]] || <code>int(exp(- p*t)*AiryAi(t), t = 0..infinity)= exp(- (p)^(3)/ 3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/ 3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/ 3)* GAMMA((5)/(3))))</code> || <code>Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}]= Exp[- (p)^(3)/ 3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/ 3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/ 3)* Gamma[Divide[5,3]]])</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E15 9.10.E15] || [[Item:Q2898|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</math>]] || <code>int(exp(- p*t)*AiryAi(- t), t = 0..infinity)=(1)/(3)*exp((p)^(3)/ 3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))</code> || <code>Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}]=Divide[1,3]*Exp[(p)^(3)/ 3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.10.E15 9.10.E15] || [[Item:Q2898|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</math>]] || <code>int(exp(- p*t)*AiryAi(- t), t = 0..infinity)=(1)/(3)*exp((p)^(3)/ 3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))</code> || <code>Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}]=Divide[1,3]*Exp[(p)^(3)/ 3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])</code> || Failure || Failure || Skip || Error  
Line 265: Line 265:
| [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] || [[Item:Q2902|<math>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math>]] || <code>AiryAi(z)=((z)^(5/ 4)* exp(-(2/ 3)* (z)^(3/ 2)))/((2)^(7/ 2)* Pi)* int(((t)^(- 1/ 2)* exp(-(2/ 3)* (t)^(3/ 2))*AiryAi(t))/((z)^(3/ 2)+ (t)^(3/ 2)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[(z)^(5/ 4)* Exp[-(2/ 3)* (z)^(3/ 2)],(2)^(7/ 2)* Pi]* Integrate[Divide[(t)^(- 1/ 2)* Exp[-(2/ 3)* (t)^(3/ 2)]*AiryAi[t],(z)^(3/ 2)+ (t)^(3/ 2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] || [[Item:Q2902|<math>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math>]] || <code>AiryAi(z)=((z)^(5/ 4)* exp(-(2/ 3)* (z)^(3/ 2)))/((2)^(7/ 2)* Pi)* int(((t)^(- 1/ 2)* exp(-(2/ 3)* (t)^(3/ 2))*AiryAi(t))/((z)^(3/ 2)+ (t)^(3/ 2)), t = 0..infinity)</code> || <code>AiryAi[z]=Divide[(z)^(5/ 4)* Exp[-(2/ 3)* (z)^(3/ 2)],(2)^(7/ 2)* Pi]* Integrate[Divide[(t)^(- 1/ 2)* Exp[-(2/ 3)* (t)^(3/ 2)]*AiryAi[t],(z)^(3/ 2)+ (t)^(3/ 2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.10.E20 9.10.E20] || [[Item:Q2905|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</math>]] || <code>int(int(AiryAi(t), t = 0..v), v = 0..x)= x*int(AiryAi(t), t = 0..x)- subs( temp=x, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )</code> || <code>Integrate[Integrate[AiryAi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryAi[t], {t, 0, x}]- (D[AiryAi[temp], {temp, 1}]/.temp-> x)+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.10.E20 9.10.E20] || [[Item:Q2905|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</math>]] || <code>int(int(AiryAi(t), t = 0..v), v = 0..x)= x*int(AiryAi(t), t = 0..x)- subs( temp=x, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )</code> || <code>Integrate[Integrate[AiryAi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryAi[t], {t, 0, x}]- (D[AiryAi[temp], {temp, 1}]/.temp-> x)+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.10.E21 9.10.E21] || [[Item:Q2906|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</math>]] || <code>int(int(AiryBi(t), t = 0..v), v = 0..x)= x*int(AiryBi(t), t = 0..x)- subs( temp=x, diff( AiryBi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )</code> || <code>Integrate[Integrate[AiryBi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryBi[t], {t, 0, x}]- (D[AiryBi[temp], {temp, 1}]/.temp-> x)+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)</code> || Failure || Failure || Skip || Successful  
| [https://dlmf.nist.gov/9.10.E21 9.10.E21] || [[Item:Q2906|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</math>]] || <code>int(int(AiryBi(t), t = 0..v), v = 0..x)= x*int(AiryBi(t), t = 0..x)- subs( temp=x, diff( AiryBi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )</code> || <code>Integrate[Integrate[AiryBi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryBi[t], {t, 0, x}]- (D[AiryBi[temp], {temp, 1}]/.temp-> x)+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)</code> || Failure || Failure || Skip || Successful  
Line 275: Line 275:
| [https://dlmf.nist.gov/9.11.E3 9.11.E3] || [[Item:Q2910|<math>\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</math>]] || <code>(AiryAi(x))^(2)=(1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity)</code> || <code>(AiryAi[x])^(2)=Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}]</code> || Failure || Failure || Skip || Skip  
| [https://dlmf.nist.gov/9.11.E3 9.11.E3] || [[Item:Q2910|<math>\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</math>]] || <code>(AiryAi(x))^(2)=(1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity)</code> || <code>(AiryAi[x])^(2)=Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}]</code> || Failure || Failure || Skip || Skip  
|-
|-
| [https://dlmf.nist.gov/9.11.E4 9.11.E4] || [[Item:Q2911|<math>\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</math>]] || <code>(AiryAi(z))^(2)+ (AiryBi(z))^(2)=(1)/((Pi)^(3/ 2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/ 2), t = 0..infinity)</code> || <code>(AiryAi[z])^(2)+ (AiryBi[z])^(2)=Divide[1,(Pi)^(3/ 2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/ 2), {t, 0, Infinity}]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[0, Less[Re[z], 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[0, Less[Re[z], 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[0, Less[Re[z], 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[0, Less[Re[z], 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.11.E4 9.11.E4] || [[Item:Q2911|<math>\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</math>]] || <code>(AiryAi(z))^(2)+ (AiryBi(z))^(2)=(1)/((Pi)^(3/ 2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/ 2), t = 0..infinity)</code> || <code>(AiryAi[z])^(2)+ (AiryBi[z])^(2)=Divide[1,(Pi)^(3/ 2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/ 2), {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.11.E12 9.11.E12] || [[Item:Q2919|<math>\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</math>]] || <code>int((1)/((AiryAi(z))^(2)), z)= Pi*(AiryBi(z))/(AiryAi(z))</code> || <code>Integrate[Divide[1,(AiryAi[z])^(2)], z]= Pi*Divide[AiryBi[z],AiryAi[z]]</code> || Failure || Successful || Skip || -  
| [https://dlmf.nist.gov/9.11.E12 9.11.E12] || [[Item:Q2919|<math>\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</math>]] || <code>int((1)/((AiryAi(z))^(2)), z)= Pi*(AiryBi(z))/(AiryAi(z))</code> || <code>Integrate[Divide[1,(AiryAi[z])^(2)], z]= Pi*Divide[AiryBi[z],AiryAi[z]]</code> || Failure || Successful || Skip || -  
Line 283: Line 283:
| [https://dlmf.nist.gov/9.11.E14 9.11.E14] || [[Item:Q2921|<math>\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</math>]] || <code>int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z)=(Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2))</code> || <code>Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z]=Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)]</code> || Failure || Failure || Skip || Successful  
| [https://dlmf.nist.gov/9.11.E14 9.11.E14] || [[Item:Q2921|<math>\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</math>]] || <code>int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z)=(Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2))</code> || <code>Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z]=Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)]</code> || Failure || Failure || Skip || Successful  
|-
|-
| [https://dlmf.nist.gov/9.11.E15 9.11.E15] || [[Item:Q2922|<math>\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</math>]] || <code>int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity)=(2*GAMMA(alpha))/((Pi)^(1/ 2)* (12)^((2*alpha + 5)/ 6)* GAMMA((1)/(3)*alpha +(5)/(6)))</code> || <code>Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}]=Divide[2*Gamma[\[Alpha]],(Pi)^(1/ 2)* (12)^((2*\[Alpha]+ 5)/ 6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[α, Rational[1, 2]], Rule[ConditionalExpression[Plus[Times[-1, Power[2, Plus[1, Times[Rational[1, 3], Plus[-5, Times[-2, α]]]]], Power[3, Times[Rational[1, 6], Plus[-5, Times[-2, α]]]], Power[Pi, Rational[-1, 2]], Power[Gamma[Plus[Rational[5, 6], Times[Rational[1, 3], α]]], -1], Gamma[α]], Times[Power[2, Plus[Rational[-5, 3], Times[Rational[-2, 3], α]]], Power[3, Plus[Rational[-11, 6], Times[Rational[-1, 3], α]]], Power[Pi, Rational[-3, 2]], Gamma[Plus[Rational[1, 6], Times[Rational[-1, 3], α]]], Power[Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], -1], Plus[Times[Power[3, α], Gamma[Times[Rational[1, 3], α]], Gamma[Times[Rational[1, 3], Plus[1, α]]]], Times[-2, Power[3, Rational[1, 2]], Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], Gamma[α], Sin[Times[Rational[1, 3], Pi, α]]]]]], Greater[Re[α], 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[α, Rational[1, 2]], Rule[ConditionalExpression[Plus[Times[-1, Power[2, Plus[1, Times[Rational[1, 3], Plus[-5, Times[-2, α]]]]], Power[3, Times[Rational[1, 6], Plus[-5, Times[-2, α]]]], Power[Pi, Rational[-1, 2]], Power[Gamma[Plus[Rational[5, 6], Times[Rational[1, 3], α]]], -1], Gamma[α]], Times[Power[2, Plus[Rational[-5, 3], Times[Rational[-2, 3], α]]], Power[3, Plus[Rational[-11, 6], Times[Rational[-1, 3], α]]], Power[Pi, Rational[-3, 2]], Gamma[Plus[Rational[1, 6], Times[Rational[-1, 3], α]]], Power[Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], -1], Plus[Times[Power[3, α], Gamma[Times[Rational[1, 3], α]], Gamma[Times[Rational[1, 3], Plus[1, α]]]], Times[-2, Power[3, Rational[1, 2]], Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], Gamma[α], Sin[Times[Rational[1, 3], Pi, α]]]]]], Greater[Re[α], 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[α, Rational[1, 2]], Rule[ConditionalExpression[Plus[Times[-1, Power[2, Plus[1, Times[Rational[1, 3], Plus[-5, Times[-2, α]]]]], Power[3, Times[Rational[1, 6], Plus[-5, Times[-2, α]]]], Power[Pi, Rational[-1, 2]], Power[Gamma[Plus[Rational[5, 6], Times[Rational[1, 3], α]]], -1], Gamma[α]], Times[Power[2, Plus[Rational[-5, 3], Times[Rational[-2, 3], α]]], Power[3, Plus[Rational[-11, 6], Times[Rational[-1, 3], α]]], Power[Pi, Rational[-3, 2]], Gamma[Plus[Rational[1, 6], Times[Rational[-1, 3], α]]], Power[Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], -1], Plus[Times[Power[3, α], Gamma[Times[Rational[1, 3], α]], Gamma[Times[Rational[1, 3], Plus[1, α]]]], Times[-2, Power[3, Rational[1, 2]], Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], Gamma[α], Sin[Times[Rational[1, 3], Pi, α]]]]]], Greater[Re[α], 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[α, Rational[1, 2]], Rule[ConditionalExpression[Plus[Times[-1, Power[2, Plus[1, Times[Rational[1, 3], Plus[-5, Times[-2, α]]]]], Power[3, Times[Rational[1, 6], Plus[-5, Times[-2, α]]]], Power[Pi, Rational[-1, 2]], Power[Gamma[Plus[Rational[5, 6], Times[Rational[1, 3], α]]], -1], Gamma[α]], Times[Power[2, Plus[Rational[-5, 3], Times[Rational[-2, 3], α]]], Power[3, Plus[Rational[-11, 6], Times[Rational[-1, 3], α]]], Power[Pi, Rational[-3, 2]], Gamma[Plus[Rational[1, 6], Times[Rational[-1, 3], α]]], Power[Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], -1], Plus[Times[Power[3, α], Gamma[Times[Rational[1, 3], α]], Gamma[Times[Rational[1, 3], Plus[1, α]]]], Times[-2, Power[3, Rational[1, 2]], Gamma[Plus[Rational[1, 3], Times[Rational[-1, 3], α]]], Gamma[α], Sin[Times[Rational[1, 3], Pi, α]]]]]], Greater[Re[α], 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.11.E15 9.11.E15] || [[Item:Q2922|<math>\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</math>]] || <code>int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity)=(2*GAMMA(alpha))/((Pi)^(1/ 2)* (12)^((2*alpha + 5)/ 6)* GAMMA((1)/(3)*alpha +(5)/(6)))</code> || <code>Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}]=Divide[2*Gamma[\[Alpha]],(Pi)^(1/ 2)* (12)^((2*\[Alpha]+ 5)/ 6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]]</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.11.E16 9.11.E16] || [[Item:Q2923|<math>\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</math>]] || <code>int((AiryAi(t))^(3), t = - infinity..infinity)=((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2))</code> || <code>Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}]=Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.11.E16 9.11.E16] || [[Item:Q2923|<math>\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</math>]] || <code>int((AiryAi(t))^(3), t = - infinity..infinity)=((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2))</code> || <code>Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}]=Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)]</code> || Failure || Failure || Skip || Error  
Line 293: Line 293:
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</math>]] || <code>int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity)= int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity)</code> || <code>Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}]= Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</math>]] || <code>int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity)= int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity)</code> || <code>Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}]= Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</math>]] || <code>int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity)=((Pi)^(2))/(6)</code> || <code>Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}]=Divide[(Pi)^(2),6]</code> || Failure || Failure || Skip || Error
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</math>]] || <code>int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity)=((Pi)^(2))/(6)</code> || <code>Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}]=Divide[(Pi)^(2),6]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-0.23072050447513104, 1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-0.23072050447513104, -1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-3.0591476292213216, -1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-3.0591476292213216, 1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.12.E1 9.12.E1] || [[Item:Q2927|<math>\deriv[2]{w}{z}-zw = \frac{1}{\pi}</math>]] || <code>diff(w, [z$(2)])- z*w =(1)/(Pi)</code> || <code>D[w, {z, 2}]- z*w =Divide[1,Pi]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.3183098861-3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}</code><br><code>-4.318309884-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}</code><br><code>-.3183098861+3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}</code><br><code>3.681690112-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}</code><br><code>-4.318309884-0.*I <- {w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}</code><br><code>-.3183098861+3.999999998*I <- {w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}</code><br><code>3.681690112-0.*I <- {w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.3183098861-3.999999998*I <- {w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}</code><br><code>-.3183098861+3.999999998*I <- {w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}</code><br><code>3.681690112-0.*I <- {w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}</code><br><code>-.3183098861-3.999999998*I <- {w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}</code><br><code>-4.318309884-0.*I <- {w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}</code><br><code>3.681690112-0.*I <- {w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}</code><br><code>-.3183098861-3.999999998*I <- {w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}</code><br><code>-4.318309884-0.*I <- {w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}</code><br><code>-.3183098861+3.999999998*I <- {w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}</code><br></div></div> || Error  
| [https://dlmf.nist.gov/9.12.E1 9.12.E1] || [[Item:Q2927|<math>\deriv[2]{w}{z}-zw = \frac{1}{\pi}</math>]] || <code>diff(w, [z$(2)])- z*w =(1)/(Pi)</code> || <code>D[w, {z, 2}]- z*w =Divide[1,Pi]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.3183098861-3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}</code><br><code>-4.318309884-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}</code><br><code>-.3183098861+3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}</code><br><code>3.681690112-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}</code><br>... skip entries to safe data<br></div></div> || Error  
|-
|-
| [https://dlmf.nist.gov/9.12.E4 9.12.E4] || [[Item:Q2932|<math>\ScorerGi@{z} = \AiryBi@{z}\int_{z}^{\infty}\AiryAi@{t}\diff{t}+\AiryAi@{z}\int_{0}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= AiryBi(z)*int(AiryAi(t), t = z..infinity)+ AiryAi(z)*int(AiryBi(t), t = 0..z)</code> || <code>ScorerGi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, z, Infinity}]+ AiryAi[z]*Integrate[AiryBi[t], {t, 0, z}]</code> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[-1, AiryAi[z], Plus[Times[Power[3, Rational[-1, 6]], z, Power[Gamma[Rational[2, 3]], -1], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Rational[-1, 4], Power[3, Rational[-1, 3]], Power[Pi, -1], Power[z, 2], Gamma[Rational[-1, 3]], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[Rational[-1, 18], AiryBi[z], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerGi[z]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[-1, AiryAi[z], Plus[Times[Power[3, Rational[-1, 6]], z, Power[Gamma[Rational[2, 3]], -1], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Rational[-1, 4], Power[3, Rational[-1, 3]], Power[Pi, -1], Power[z, 2], Gamma[Rational[-1, 3]], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[Rational[-1, 18], AiryBi[z], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerGi[z]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[-1, AiryAi[z], Plus[Times[Power[3, Rational[-1, 6]], z, Power[Gamma[Rational[2, 3]], -1], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Rational[-1, 4], Power[3, Rational[-1, 3]], Power[Pi, -1], Power[z, 2], Gamma[Rational[-1, 3]], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[Rational[-1, 18], AiryBi[z], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerGi[z]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[-1, AiryAi[z], Plus[Times[Power[3, Rational[-1, 6]], z, Power[Gamma[Rational[2, 3]], -1], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Rational[-1, 4], Power[3, Rational[-1, 3]], Power[Pi, -1], Power[z, 2], Gamma[Rational[-1, 3]], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], Times[Rational[-1, 18], AiryBi[z], Plus[6, Times[-3, Power[3, Rational[5, 6]], Power[Pi, -1], z, Gamma[Rational[1, 3]], HypergeometricPFQ[{Rational[1, 3]}, {Rational[2, 3], Rational[4, 3]}, Times[Rational[1, 9], Power[z, 3]]]], Times[Power[3, Rational[2, 3]], Power[z, 2], Power[Gamma[Rational[4, 3]], -1], HypergeometricPFQ[{Rational[2, 3]}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerGi[z]], And[Greater[Re[z], 0], Equal[Im[z], 0]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.12.E4 9.12.E4] || [[Item:Q2932|<math>\ScorerGi@{z} = \AiryBi@{z}\int_{z}^{\infty}\AiryAi@{t}\diff{t}+\AiryAi@{z}\int_{0}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= AiryBi(z)*int(AiryAi(t), t = z..infinity)+ AiryAi(z)*int(AiryBi(t), t = 0..z)</code> || <code>ScorerGi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, z, Infinity}]+ AiryAi[z]*Integrate[AiryBi[t], {t, 0, z}]</code> || Successful || Failure || - || Successful
|-
|-
| [https://dlmf.nist.gov/9.12.E5 9.12.E5] || [[Item:Q2933|<math>\ScorerHi@{z} = \AiryBi@{z}\int_{-\infty}^{z}\AiryAi@{t}\diff{t}-\AiryAi@{z}\int_{-\infty}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= AiryBi(z)*int(AiryAi(t), t = - infinity..z)- AiryAi(z)*int(AiryBi(t), t = - infinity..z)</code> || <code>ScorerHi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, - Infinity, z}]- AiryAi[z]*Integrate[AiryBi[t], {t, - Infinity, z}]</code> || Successful || Failure || - || Error
| [https://dlmf.nist.gov/9.12.E5 9.12.E5] || [[Item:Q2933|<math>\ScorerHi@{z} = \AiryBi@{z}\int_{-\infty}^{z}\AiryAi@{t}\diff{t}-\AiryAi@{z}\int_{-\infty}^{z}\AiryBi@{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= AiryBi(z)*int(AiryAi(t), t = - infinity..z)- AiryAi(z)*int(AiryBi(t), t = - infinity..z)</code> || <code>ScorerHi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, - Infinity, z}]- AiryAi[z]*Integrate[AiryBi[t], {t, - Infinity, z}]</code> || Successful || Failure || - || Skip
|-
|-
| [https://dlmf.nist.gov/9.12.E6 9.12.E6] || [[Item:Q2934|<math>\ScorerGi@{0} = \tfrac{1}{2}\ScorerHi@{0}</math>]] || <code>AiryBi(0)*(int(AiryAi(t), t = (0) .. infinity))+AiryAi(0)*(int(AiryBi(t), t = 0 .. (0)))=(1)/(2)*AiryBi(0)*(int(AiryAi(t), t = -infinity .. (0)))-AiryAi(0)*(int(AiryBi(t), t = -infinity .. (0)))</code> || <code>ScorerGi[0]=Divide[1,2]*ScorerHi[0]</code> || Successful || Successful || - || -  
| [https://dlmf.nist.gov/9.12.E6 9.12.E6] || [[Item:Q2934|<math>\ScorerGi@{0} = \tfrac{1}{2}\ScorerHi@{0}</math>]] || <code>AiryBi(0)*(int(AiryAi(t), t = (0) .. infinity))+AiryAi(0)*(int(AiryBi(t), t = 0 .. (0)))=(1)/(2)*AiryBi(0)*(int(AiryAi(t), t = -infinity .. (0)))-AiryAi(0)*(int(AiryBi(t), t = -infinity .. (0)))</code> || <code>ScorerGi[0]=Divide[1,2]*ScorerHi[0]</code> || Successful || Successful || - || -  
Line 331: Line 331:
| [https://dlmf.nist.gov/9.12.E18 9.12.E18] || [[Item:Q2946|<math>\ScorerHi'@{z} = \frac{3^{-1/3}}{\pi}\sum_{k=0}^{\infty}\EulerGamma@{\frac{k+2}{3}}\frac{(3^{1/3}z)^{k}}{k!}</math>]] || <code>subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )=((3)^(- 1/ 3))/(Pi)*sum(GAMMA((k + 2)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity)</code> || <code>(D[ScorerHi[temp], {temp, 1}]/.temp-> z)=Divide[(3)^(- 1/ 3),Pi]*Sum[Gamma[Divide[k + 2,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}]</code> || Failure || Successful || Skip || -  
| [https://dlmf.nist.gov/9.12.E18 9.12.E18] || [[Item:Q2946|<math>\ScorerHi'@{z} = \frac{3^{-1/3}}{\pi}\sum_{k=0}^{\infty}\EulerGamma@{\frac{k+2}{3}}\frac{(3^{1/3}z)^{k}}{k!}</math>]] || <code>subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )=((3)^(- 1/ 3))/(Pi)*sum(GAMMA((k + 2)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity)</code> || <code>(D[ScorerHi[temp], {temp, 1}]/.temp-> z)=Divide[(3)^(- 1/ 3),Pi]*Sum[Gamma[Divide[k + 2,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}]</code> || Failure || Successful || Skip || -  
|-
|-
| [https://dlmf.nist.gov/9.12.E19 9.12.E19] || [[Item:Q2947|<math>\ScorerGi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\sin@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x)))=(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>ScorerGi[x]=Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Skip
| [https://dlmf.nist.gov/9.12.E19 9.12.E19] || [[Item:Q2947|<math>\ScorerGi@{x} = \frac{1}{\pi}\int_{0}^{\infty}\sin@{\tfrac{1}{3}t^{3}+xt}\diff{t}</math>]] || <code>AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x)))=(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity)</code> || <code>ScorerGi[x]=Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.12.E20 9.12.E20] || [[Item:Q2948|<math>\ScorerHi@{z} = \frac{1}{\pi}\int_{0}^{\infty}\exp@{-\tfrac{1}{3}t^{3}+zt}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ z*t), t = 0..infinity)</code> || <code>ScorerHi[z]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ z*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[z]], Times[3, Power[z, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerHi[z]], Less[Re[z], 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[z]], Times[3, Power[z, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerHi[z]], Less[Re[z], 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[z]], Times[3, Power[z, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerHi[z]], Less[Re[z], 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[Times[Rational[-1, 6], Power[Pi, -1], Plus[Times[4, Pi, AiryBi[z]], Times[3, Power[z, 2], HypergeometricPFQ[{1}, {Rational[4, 3], Rational[5, 3]}, Times[Rational[1, 9], Power[z, 3]]]]]], ScorerHi[z]], Less[Re[z], 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
| [https://dlmf.nist.gov/9.12.E20 9.12.E20] || [[Item:Q2948|<math>\ScorerHi@{z} = \frac{1}{\pi}\int_{0}^{\infty}\exp@{-\tfrac{1}{3}t^{3}+zt}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ z*t), t = 0..infinity)</code> || <code>ScorerHi[z]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ z*t], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
|-
|-
| [https://dlmf.nist.gov/9.12.E21 9.12.E21] || [[Item:Q2949|<math>\ScorerGi@{z} = -\frac{1}{\pi}\int_{0}^{\infty}\exp@{-\tfrac{1}{3}t^{3}-\tfrac{1}{2}zt}\cos@{\tfrac{1}{2}\sqrt{3}zt+\tfrac{2}{3}\pi}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= -(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)-(1)/(2)*z*t)*cos((1)/(2)*sqrt(3)*z*t +(2)/(3)*Pi), t = 0..infinity)</code> || <code>ScorerGi[z]= -Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)-Divide[1,2]*z*t]*Cos[Divide[1,2]*Sqrt[3]*z*t +Divide[2,3]*Pi], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.12.E21 9.12.E21] || [[Item:Q2949|<math>\ScorerGi@{z} = -\frac{1}{\pi}\int_{0}^{\infty}\exp@{-\tfrac{1}{3}t^{3}-\tfrac{1}{2}zt}\cos@{\tfrac{1}{2}\sqrt{3}zt+\tfrac{2}{3}\pi}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= -(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)-(1)/(2)*z*t)*cos((1)/(2)*sqrt(3)*z*t +(2)/(3)*Pi), t = 0..infinity)</code> || <code>ScorerGi[z]= -Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)-Divide[1,2]*z*t]*Cos[Divide[1,2]*Sqrt[3]*z*t +Divide[2,3]*Pi], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.12.E22 9.12.E22] || [[Item:Q2950|<math>\ScorerHi@{-z} = \frac{4z^{2}}{3^{3/2}\pi^{2}}\int_{0}^{\infty}\frac{\modBesselK{1/3}@{t}}{\zeta^{2}+t^{2}}\diff{t}</math>]] || <code>AiryBi(- z)*(int(AiryAi(t), t = -infinity .. (- z)))-AiryAi(- z)*(int(AiryBi(t), t = -infinity .. (- z)))=(4*(z)^(2))/((3)^(3/ 2)* (Pi)^(2))*int((BesselK(1/ 3, t))/((2)/(3)*((z)^((3)/(2)))^(2)+ (t)^(2)), t = 0..infinity)</code> || <code>ScorerHi[- z]=Divide[4*(z)^(2),(3)^(3/ 2)* (Pi)^(2)]*Integrate[Divide[BesselK[1/ 3, t],Divide[2,3]*((z)^(Divide[3,2]))^(2)+ (t)^(2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || Successful
| [https://dlmf.nist.gov/9.12.E22 9.12.E22] || [[Item:Q2950|<math>\ScorerHi@{-z} = \frac{4z^{2}}{3^{3/2}\pi^{2}}\int_{0}^{\infty}\frac{\modBesselK{1/3}@{t}}{\zeta^{2}+t^{2}}\diff{t}</math>]] || <code>AiryBi(- z)*(int(AiryAi(t), t = -infinity .. (- z)))-AiryAi(- z)*(int(AiryBi(t), t = -infinity .. (- z)))=(4*(z)^(2))/((3)^(3/ 2)* (Pi)^(2))*int((BesselK(1/ 3, t))/((2)/(3)*((z)^((3)/(2)))^(2)+ (t)^(2)), t = 0..infinity)</code> || <code>ScorerHi[- z]=Divide[4*(z)^(2),(3)^(3/ 2)* (Pi)^(2)]*Integrate[Divide[BesselK[1/ 3, t],Divide[2,3]*((z)^(Divide[3,2]))^(2)+ (t)^(2)], {t, 0, Infinity}]</code> || Failure || Failure || Skip || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.04337928599820519, -0.02597020526100885] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}</code><br><code>Complex[0.04337928599820519, 0.02597020526100885] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}</code><br></div></div>
|-
|-
| [https://dlmf.nist.gov/9.12.E24 9.12.E24] || [[Item:Q2952|<math>\ScorerHi@{z} = \frac{3^{-2/3}}{2\pi^{2}i}\int_{-i\infty}^{i\infty}\EulerGamma@{\tfrac{1}{3}+\tfrac{1}{3}t}\EulerGamma@{-t}(3^{1/3}e^{\pi i}z)^{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=((3)^(- 2/ 3))/(2*(Pi)^(2)* I)*int(GAMMA((1)/(3)+(1)/(3)*t)*GAMMA(- t)*((3)^(1/ 3)* exp(Pi*I)*z)^(t), t = - I*infinity..I*infinity)</code> || <code>ScorerHi[z]=Divide[(3)^(- 2/ 3),2*(Pi)^(2)* I]*Integrate[Gamma[Divide[1,3]+Divide[1,3]*t]*Gamma[- t]*((3)^(1/ 3)* Exp[Pi*I]*z)^(t), {t, - I*Infinity, I*Infinity}]</code> || Failure || Failure || Skip || Error  
| [https://dlmf.nist.gov/9.12.E24 9.12.E24] || [[Item:Q2952|<math>\ScorerHi@{z} = \frac{3^{-2/3}}{2\pi^{2}i}\int_{-i\infty}^{i\infty}\EulerGamma@{\tfrac{1}{3}+\tfrac{1}{3}t}\EulerGamma@{-t}(3^{1/3}e^{\pi i}z)^{t}\diff{t}</math>]] || <code>AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=((3)^(- 2/ 3))/(2*(Pi)^(2)* I)*int(GAMMA((1)/(3)+(1)/(3)*t)*GAMMA(- t)*((3)^(1/ 3)* exp(Pi*I)*z)^(t), t = - I*infinity..I*infinity)</code> || <code>ScorerHi[z]=Divide[(3)^(- 2/ 3),2*(Pi)^(2)* I]*Integrate[Gamma[Divide[1,3]+Divide[1,3]*t]*Gamma[- t]*((3)^(1/ 3)* Exp[Pi*I]*z)^(t), {t, - I*Infinity, I*Infinity}]</code> || Failure || Failure || Skip || Error  
|-
|-
| [https://dlmf.nist.gov/9.13.E13 9.13.E13] || [[Item:Q2975|<math>\deriv[2]{w}{t} = \tfrac{1}{4}m^{2}t^{m-2}w</math>]] || <code>diff(w, [t$(2)])=(1)/(4)*(m)^(2)* (t)^(m - 2)* w</code> || <code>D[w, {t, 2}]=Divide[1,4]*(m)^(2)* (t)^(m - 2)* w</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.2500000000 <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}</code><br><code>-1.414213562-1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-0.-8.999999996*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-0.+.2500000000*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}</code><br><code>-1.414213562+1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-8.999999996-0.*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 3}</code><br><code>.2500000000-0.*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 1}</code><br><code>1.414213562+1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-0.+8.999999996*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-0.-.2500000000*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 1}</code><br><code>1.414213562-1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 2}</code><br><code>8.999999996-0.*I <- {t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-0.-.2500000000*I <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}</code><br><code>-1.414213562-1.414213562*I <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-8.999999996-0.*I <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-.2500000000 <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}</code><br><code>-1.414213562+1.414213562*I <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-0.+8.999999996*I <- {t = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-0.+.2500000000*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 1}</code><br><code>1.414213562+1.414213562*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 2}</code><br><code>8.999999996-0.*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 3}</code><br><code>.2500000000-0.*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 1}</code><br><code>1.414213562-1.414213562*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-0.-8.999999996*I <- {t = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 3}</code><br><code>.2500000000-0.*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}</code><br><code>-1.414213562-1.414213562*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-0.+8.999999996*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-0.-.2500000000*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}</code><br><code>-1.414213562+1.414213562*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 2}</code><br><code>8.999999996-0.*I <- {t = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-.2500000000 <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 1}</code><br><code>1.414213562+1.414213562*I <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-0.-8.999999996*I <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-0.+.2500000000*I <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 1}</code><br><code>1.414213562-1.414213562*I <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-8.999999996-0.*I <- {t = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-0.+.2500000000*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}</code><br><code>-1.414213562-1.414213562*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}</code><br><code>8.999999996-0.*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}</code><br><code>.2500000000-0.*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}</code><br><code>-1.414213562+1.414213562*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-0.-8.999999996*I <- {t = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-0.-.2500000000*I <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 1}</code><br><code>1.414213562+1.414213562*I <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 2}</code><br><code>-8.999999996-0.*I <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), m = 3}</code><br><code>-.2500000000 <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 1}</code><br><code>1.414213562-1.414213562*I <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-0.+8.999999996*I <- {t = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), m = 3}</code><br></div></div> || Error  
| [https://dlmf.nist.gov/9.13.E13 9.13.E13] || [[Item:Q2975|<math>\deriv[2]{w}{t} = \tfrac{1}{4}m^{2}t^{m-2}w</math>]] || <code>diff(w, [t$(2)])=(1)/(4)*(m)^(2)* (t)^(m - 2)* w</code> || <code>D[w, {t, 2}]=Divide[1,4]*(m)^(2)* (t)^(m - 2)* w</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-.2500000000 <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}</code><br><code>-1.414213562-1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}</code><br><code>-0.-8.999999996*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}</code><br><code>-0.+.2500000000*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}</code><br>... skip entries to safe data<br></div></div> || Error  
|-
|-
| [https://dlmf.nist.gov/9.13.E20 9.13.E20] || [[Item:Q2983|<math>U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</math>]] || <code>U[1]*(x , alpha)=(1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/ 2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/ 2))</code> || <code>Subscript[U, 1]*(x , \[Alpha])=Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/ 2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/ 2)]</code> || Failure || Failure || Error || Error  
| [https://dlmf.nist.gov/9.13.E20 9.13.E20] || [[Item:Q2983|<math>U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</math>]] || <code>U[1]*(x , alpha)=(1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/ 2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/ 2))</code> || <code>Subscript[U, 1]*(x , \[Alpha])=Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/ 2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/ 2)]</code> || Failure || Failure || Error || Error  

Latest revision as of 14:53, 19 January 2020

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
9.2.E2 w = Ai ( z ) , Bi ( z ) , Ai ( z e - 2 π i / 3 ) 𝑤 Airy-Ai 𝑧 Airy-Bi 𝑧 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 imaginary-unit 3 {\displaystyle{\displaystyle w=\mathrm{Ai}\left(z\right),\;\mathrm{Bi}\left(z% \right),\;\mathrm{Ai}\left(ze^{-2\pi\mathrm{i}/3}\right)}} w = AiryAi(z), AiryBi(z), AiryAi(z*exp(- 2*Pi*I/ 3)) w = AiryAi[z], AiryBi[z], AiryAi[z*Exp[- 2*Pi*I/ 3]] Failure Failure Error Error
9.2.E2 w = Ai ( z ) , Bi ( z ) , Ai ( z e + 2 π i / 3 ) 𝑤 Airy-Ai 𝑧 Airy-Bi 𝑧 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 imaginary-unit 3 {\displaystyle{\displaystyle w=\mathrm{Ai}\left(z\right),\;\mathrm{Bi}\left(z% \right),\;\mathrm{Ai}\left(ze^{+2\pi\mathrm{i}/3}\right)}} w = AiryAi(z), AiryBi(z), AiryAi(z*exp(+ 2*Pi*I/ 3)) w = AiryAi[z], AiryBi[z], AiryAi[z*Exp[+ 2*Pi*I/ 3]] Failure Failure Error Error
9.2.E3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) Airy-Ai 0 1 superscript 3 2 3 Euler-Gamma 2 3 {\displaystyle{\displaystyle\mathrm{Ai}\left(0\right)=\frac{1}{3^{2/3}\Gamma% \left(\tfrac{2}{3}\right)}}} AiryAi(0)=(1)/((3)^(2/ 3)* GAMMA((2)/(3))) AiryAi[0]=Divide[1,(3)^(2/ 3)* Gamma[Divide[2,3]]] Successful Successful - -
9.2.E4 Ai ( 0 ) = - 1 3 1 / 3 Γ ( 1 3 ) diffop Airy-Ai 1 0 1 superscript 3 1 3 Euler-Gamma 1 3 {\displaystyle{\displaystyle\mathrm{Ai}'\left(0\right)=-\frac{1}{3^{1/3}\Gamma% \left(\tfrac{1}{3}\right)}}} subs( temp=0, diff( AiryAi(temp), temp$(1) ) )= -(1)/((3)^(1/ 3)* GAMMA((1)/(3))) (D[AiryAi[temp], {temp, 1}]/.temp-> 0)= -Divide[1,(3)^(1/ 3)* Gamma[Divide[1,3]]] Successful Successful - -
9.2.E5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) Airy-Bi 0 1 superscript 3 1 6 Euler-Gamma 2 3 {\displaystyle{\displaystyle\mathrm{Bi}\left(0\right)=\frac{1}{3^{1/6}\Gamma% \left(\tfrac{2}{3}\right)}}} AiryBi(0)=(1)/((3)^(1/ 6)* GAMMA((2)/(3))) AiryBi[0]=Divide[1,(3)^(1/ 6)* Gamma[Divide[2,3]]] Successful Successful - -
9.2.E6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) diffop Airy-Bi 1 0 superscript 3 1 6 Euler-Gamma 1 3 {\displaystyle{\displaystyle\mathrm{Bi}'\left(0\right)=\frac{3^{1/6}}{\Gamma% \left(\tfrac{1}{3}\right)}}} subs( temp=0, diff( AiryBi(temp), temp$(1) ) )=((3)^(1/ 6))/(GAMMA((1)/(3))) (D[AiryBi[temp], {temp, 1}]/.temp-> 0)=Divide[(3)^(1/ 6),Gamma[Divide[1,3]]] Successful Successful - -
9.2.E7 𝒲 { Ai ( z ) , Bi ( z ) } = 1 π Wronskian Airy-Ai 𝑧 Airy-Bi 𝑧 1 𝜋 {\displaystyle{\displaystyle\mathscr{W}\left\{\mathrm{Ai}\left(z\right),% \mathrm{Bi}\left(z\right)\right\}=\frac{1}{\pi}}} (AiryAi(z))*diff(AiryBi(z), z)-diff(AiryAi(z), z)*(AiryBi(z))=(1)/(Pi) Wronskian[{AiryAi[z], AiryBi[z]}, z]=Divide[1,Pi] Failure Successful Successful -
9.2.E8 𝒲 { Ai ( z ) , Ai ( z e - 2 π i / 3 ) } = e + π i / 6 2 π Wronskian Airy-Ai 𝑧 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 6 2 𝜋 {\displaystyle{\displaystyle\mathscr{W}\left\{\mathrm{Ai}\left(z\right),% \mathrm{Ai}\left(ze^{-2\pi i/3}\right)\right\}=\frac{e^{+\pi i/6}}{2\pi}}} (AiryAi(z))*diff(AiryAi(z*exp(- 2*Pi*I/ 3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(- 2*Pi*I/ 3)))=(exp(+ Pi*I/ 6))/(2*Pi) Wronskian[{AiryAi[z], AiryAi[z*Exp[- 2*Pi*I/ 3]]}, z]=Divide[Exp[+ Pi*I/ 6],2*Pi] Failure Successful Successful -
9.2.E8 𝒲 { Ai ( z ) , Ai ( z e + 2 π i / 3 ) } = e - π i / 6 2 π Wronskian Airy-Ai 𝑧 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 6 2 𝜋 {\displaystyle{\displaystyle\mathscr{W}\left\{\mathrm{Ai}\left(z\right),% \mathrm{Ai}\left(ze^{+2\pi i/3}\right)\right\}=\frac{e^{-\pi i/6}}{2\pi}}} (AiryAi(z))*diff(AiryAi(z*exp(+ 2*Pi*I/ 3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(+ 2*Pi*I/ 3)))=(exp(- Pi*I/ 6))/(2*Pi) Wronskian[{AiryAi[z], AiryAi[z*Exp[+ 2*Pi*I/ 3]]}, z]=Divide[Exp[- Pi*I/ 6],2*Pi] Failure Successful Successful -
9.2.E9 𝒲 { Ai ( z e - 2 π i / 3 ) , Ai ( z e 2 π i / 3 ) } = 1 2 π i Wronskian Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 1 2 𝜋 𝑖 {\displaystyle{\displaystyle\mathscr{W}\left\{\mathrm{Ai}\left(ze^{-2\pi i/3}% \right),\mathrm{Ai}\left(ze^{2\pi i/3}\right)\right\}=\frac{1}{2\pi i}}} (AiryAi(z*exp(- 2*Pi*I/ 3)))*diff(AiryAi(z*exp(2*Pi*I/ 3)), z)-diff(AiryAi(z*exp(- 2*Pi*I/ 3)), z)*(AiryAi(z*exp(2*Pi*I/ 3)))=(1)/(2*Pi*I) Wronskian[{AiryAi[z*Exp[- 2*Pi*I/ 3]], AiryAi[z*Exp[2*Pi*I/ 3]]}, z]=Divide[1,2*Pi*I] Failure Successful Successful -
9.2.E10 Bi ( z ) = e - π i / 6 Ai ( z e - 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) Airy-Bi 𝑧 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)=e^{-\pi i/6}\mathrm{Ai}% \left(ze^{-2\pi i/3}\right)+e^{\pi i/6}\mathrm{Ai}\left(ze^{2\pi i/3}\right)}} AiryBi(z)= exp(- Pi*I/ 6)*AiryAi(z*exp(- 2*Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(2*Pi*I/ 3)) AiryBi[z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[- 2*Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[2*Pi*I/ 3]] Failure Successful Successful -
9.2.E11 Ai ( z e - 2 π i / 3 ) = 1 2 e - π i / 3 ( Ai ( z ) + i Bi ( z ) ) Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 1 2 superscript 𝑒 𝜋 𝑖 3 Airy-Ai 𝑧 𝑖 Airy-Bi 𝑧 {\displaystyle{\displaystyle\mathrm{Ai}\left(ze^{-2\pi i/3}\right)=\tfrac{1}{2% }e^{-\pi i/3}\left(\mathrm{Ai}\left(z\right)+i\mathrm{Bi}\left(z\right)\right)}} AiryAi(z*exp(- 2*Pi*I/ 3))=(1)/(2)*exp(- Pi*I/ 3)*(AiryAi(z)+ I*AiryBi(z)) AiryAi[z*Exp[- 2*Pi*I/ 3]]=Divide[1,2]*Exp[- Pi*I/ 3]*(AiryAi[z]+ I*AiryBi[z]) Failure Successful Successful -
9.2.E11 Ai ( z e + 2 π i / 3 ) = 1 2 e + π i / 3 ( Ai ( z ) - i Bi ( z ) ) Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 1 2 superscript 𝑒 𝜋 𝑖 3 Airy-Ai 𝑧 𝑖 Airy-Bi 𝑧 {\displaystyle{\displaystyle\mathrm{Ai}\left(ze^{+2\pi i/3}\right)=\tfrac{1}{2% }e^{+\pi i/3}\left(\mathrm{Ai}\left(z\right)-i\mathrm{Bi}\left(z\right)\right)}} AiryAi(z*exp(+ 2*Pi*I/ 3))=(1)/(2)*exp(+ Pi*I/ 3)*(AiryAi(z)- I*AiryBi(z)) AiryAi[z*Exp[+ 2*Pi*I/ 3]]=Divide[1,2]*Exp[+ Pi*I/ 3]*(AiryAi[z]- I*AiryBi[z]) Failure Successful Successful -
9.2.E12 Ai ( z ) + e - 2 π i / 3 Ai ( z e - 2 π i / 3 ) + e 2 π i / 3 Ai ( z e 2 π i / 3 ) = 0 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 superscript 𝑒 2 𝜋 𝑖 3 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 0 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)+e^{-2\pi i/3}\mathrm{Ai}% \left(ze^{-2\pi i/3}\right)+e^{2\pi i/3}\mathrm{Ai}\left(ze^{2\pi i/3}\right)=% 0}} AiryAi(z)+ exp(- 2*Pi*I/ 3)*AiryAi(z*exp(- 2*Pi*I/ 3))+ exp(2*Pi*I/ 3)*AiryAi(z*exp(2*Pi*I/ 3))= 0 AiryAi[z]+ Exp[- 2*Pi*I/ 3]*AiryAi[z*Exp[- 2*Pi*I/ 3]]+ Exp[2*Pi*I/ 3]*AiryAi[z*Exp[2*Pi*I/ 3]]= 0 Failure Successful Successful -
9.2.E13 Bi ( z ) + e - 2 π i / 3 Bi ( z e - 2 π i / 3 ) + e 2 π i / 3 Bi ( z e 2 π i / 3 ) = 0 Airy-Bi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 Airy-Bi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 superscript 𝑒 2 𝜋 𝑖 3 Airy-Bi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 0 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)+e^{-2\pi i/3}\mathrm{Bi}% \left(ze^{-2\pi i/3}\right)+e^{2\pi i/3}\mathrm{Bi}\left(ze^{2\pi i/3}\right)=% 0}} AiryBi(z)+ exp(- 2*Pi*I/ 3)*AiryBi(z*exp(- 2*Pi*I/ 3))+ exp(2*Pi*I/ 3)*AiryBi(z*exp(2*Pi*I/ 3))= 0 AiryBi[z]+ Exp[- 2*Pi*I/ 3]*AiryBi[z*Exp[- 2*Pi*I/ 3]]+ Exp[2*Pi*I/ 3]*AiryBi[z*Exp[2*Pi*I/ 3]]= 0 Failure Successful Successful -
9.2.E14 Ai ( - z ) = e π i / 3 Ai ( z e π i / 3 ) + e - π i / 3 Ai ( z e - π i / 3 ) Airy-Ai 𝑧 superscript 𝑒 𝜋 𝑖 3 Airy-Ai 𝑧 superscript 𝑒 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 3 Airy-Ai 𝑧 superscript 𝑒 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Ai}\left(-z\right)=e^{\pi i/3}\mathrm{Ai}% \left(ze^{\pi i/3}\right)+e^{-\pi i/3}\mathrm{Ai}\left(ze^{-\pi i/3}\right)}} AiryAi(- z)= exp(Pi*I/ 3)*AiryAi(z*exp(Pi*I/ 3))+ exp(- Pi*I/ 3)*AiryAi(z*exp(- Pi*I/ 3)) AiryAi[- z]= Exp[Pi*I/ 3]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[- Pi*I/ 3]*AiryAi[z*Exp[- Pi*I/ 3]] Failure Successful Successful -
9.2.E15 Bi ( - z ) = e - π i / 6 Ai ( z e π i / 3 ) + e π i / 6 Ai ( z e - π i / 3 ) Airy-Bi 𝑧 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Bi}\left(-z\right)=e^{-\pi i/6}\mathrm{Ai}% \left(ze^{\pi i/3}\right)+e^{\pi i/6}\mathrm{Ai}\left(ze^{-\pi i/3}\right)}} AiryBi(- z)= exp(- Pi*I/ 6)*AiryAi(z*exp(Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(- Pi*I/ 3)) AiryBi[- z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[- Pi*I/ 3]] Failure Successful Successful -
9.5.E1 Ai ( x ) = 1 π 0 cos ( 1 3 t 3 + x t ) d t Airy-Ai 𝑥 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(x\right)=\frac{1}{\pi}\int_{0}^{% \infty}\cos\left(\tfrac{1}{3}t^{3}+xt\right)\mathrm{d}t}} AiryAi(x)=(1)/(Pi)*int(cos((1)/(3)*(t)^(3)+ x*t), t = 0..infinity) AiryAi[x]=Divide[1,Pi]*Integrate[Cos[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}] Successful Failure - Successful
9.5.E2 Ai ( - x ) = x 1 / 2 π - 1 cos ( x 3 / 2 ( 1 3 t 3 + t 2 - 2 3 ) ) d t Airy-Ai 𝑥 superscript 𝑥 1 2 𝜋 superscript subscript 1 superscript 𝑥 3 2 1 3 superscript 𝑡 3 superscript 𝑡 2 2 3 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(-x\right)=\frac{x^{\ifrac{1}{2}}}% {\pi}\int_{-1}^{\infty}\cos\left(x^{\ifrac{3}{2}}(\tfrac{1}{3}t^{3}+t^{2}-% \tfrac{2}{3})\right)\mathrm{d}t}} AiryAi(- x)=((x)^((1)/(2)))/(Pi)*int(cos((x)^((3)/(2))*((1)/(3)*(t)^(3)+ (t)^(2)-(2)/(3))), t = - 1..infinity) AiryAi[- x]=Divide[(x)^(Divide[1,2]),Pi]*Integrate[Cos[(x)^(Divide[3,2])*(Divide[1,3]*(t)^(3)+ (t)^(2)-Divide[2,3])], {t, - 1, Infinity}] Failure Failure Skip Error
9.5.E3 Bi ( x ) = 1 π 0 exp ( - 1 3 t 3 + x t ) d t + 1 π 0 sin ( 1 3 t 3 + x t ) d t Airy-Bi 𝑥 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 𝑥 𝑡 𝑡 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Bi}\left(x\right)=\frac{1}{\pi}\int_{0}^{% \infty}\exp\left(-{\tfrac{1}{3}}t^{3}+xt\right)\mathrm{d}t+\frac{1}{\pi}\int_{% 0}^{\infty}\sin\left(\tfrac{1}{3}t^{3}+xt\right)\mathrm{d}t}} AiryBi(x)=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ x*t), t = 0..infinity)+(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity) AiryBi[x]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]+Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}] Failure Failure Skip Successful
9.5.E4 Ai ( z ) = 1 2 π i e - π i / 3 e π i / 3 exp ( 1 3 t 3 - z t ) d t Airy-Ai 𝑧 1 2 𝜋 𝑖 superscript subscript superscript 𝑒 𝜋 𝑖 3 superscript 𝑒 𝜋 𝑖 3 1 3 superscript 𝑡 3 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{1}{2\pi i}\int_{% \infty e^{-\pi i/3}}^{\infty e^{\pi i/3}}\exp\left(\tfrac{1}{3}t^{3}-zt\right)% \mathrm{d}t}} AiryAi(z)=(1)/(2*Pi*I)*int(exp((1)/(3)*(t)^(3)- z*t), t = infinity*exp(- Pi*I/ 3)..infinity*exp(Pi*I/ 3)) AiryAi[z]=Divide[1,2*Pi*I]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, Infinity*Exp[- Pi*I/ 3], Infinity*Exp[Pi*I/ 3]}] Failure Failure Skip Skip
9.5.E5 Bi ( z ) = 1 2 π - e π i / 3 exp ( 1 3 t 3 - z t ) d t + 1 2 π - e - π i / 3 exp ( 1 3 t 3 - z t ) d t Airy-Bi 𝑧 1 2 𝜋 superscript subscript superscript 𝑒 𝜋 𝑖 3 1 3 superscript 𝑡 3 𝑧 𝑡 𝑡 1 2 𝜋 superscript subscript superscript 𝑒 𝜋 𝑖 3 1 3 superscript 𝑡 3 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)=\frac{1}{2\pi}\int_{-% \infty}^{\infty e^{\pi i/3}}\exp\left(\tfrac{1}{3}t^{3}-zt\right)\mathrm{d}t+% \dfrac{1}{2\pi}\int_{-\infty}^{\infty e^{-\pi i/3}}\exp\left(\tfrac{1}{3}t^{3}% -zt\right)\mathrm{d}t}} AiryBi(z)=(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(Pi*I/ 3))+(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(- Pi*I/ 3)) AiryBi[z]=Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[Pi*I/ 3]}]+Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[- Pi*I/ 3]}] Failure Failure Skip Skip
9.5.E6 Ai ( z ) = 3 2 π 0 exp ( - t 3 3 - z 3 3 t 3 ) d t Airy-Ai 𝑧 3 2 𝜋 superscript subscript 0 superscript 𝑡 3 3 superscript 𝑧 3 3 superscript 𝑡 3 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{\sqrt{3}}{2\pi}% \int_{0}^{\infty}\exp\left(-\frac{t^{3}}{3}-\frac{z^{3}}{3t^{3}}\right)\mathrm% {d}t}} AiryAi(z)=(sqrt(3))/(2*Pi)*int(exp(-((t)^(3))/(3)-((z)^(3))/(3*(t)^(3))), t = 0..infinity) AiryAi[z]=Divide[Sqrt[3],2*Pi]*Integrate[Exp[-Divide[(t)^(3),3]-Divide[(z)^(3),3*(t)^(3)]], {t, 0, Infinity}] Successful Failure - Successful
9.5.E7 Ai ( z ) = e - ζ π 0 exp ( - z 1 / 2 t 2 ) cos ( 1 3 t 3 ) d t Airy-Ai 𝑧 superscript 𝑒 𝜁 𝜋 superscript subscript 0 superscript 𝑧 1 2 superscript 𝑡 2 1 3 superscript 𝑡 3 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{e^{-\zeta}}{\pi}% \int_{0}^{\infty}\exp\left(-z^{\ifrac{1}{2}}t^{2}\right)\cos\left(\tfrac{1}{3}% t^{3}\right)\mathrm{d}t}} AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2))))/(Pi)*int(exp(- (z)^((1)/(2))* (t)^(2))*cos((1)/(3)*(t)^(3)), t = 0..infinity) AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])],Pi]*Integrate[Exp[- (z)^(Divide[1,2])* (t)^(2)]*Cos[Divide[1,3]*(t)^(3)], {t, 0, Infinity}] Failure Failure Skip Skip
9.5.E8 Ai ( z ) = e - ζ ζ - 1 / 6 π ( 48 ) 1 / 6 Γ ( 5 6 ) 0 e - t t - 1 / 6 ( 2 + t ζ ) - 1 / 6 d t Airy-Ai 𝑧 superscript 𝑒 𝜁 superscript 𝜁 1 6 𝜋 superscript 48 1 6 Euler-Gamma 5 6 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 1 6 superscript 2 𝑡 𝜁 1 6 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{e^{-\zeta}\zeta^{% \ifrac{-1}{6}}}{\sqrt{\pi}(48)^{\ifrac{1}{6}}\Gamma\left(\frac{5}{6}\right)}% \int_{0}^{\infty}e^{-t}t^{-\ifrac{1}{6}}\left(2+\frac{t}{\zeta}\right)^{-% \ifrac{1}{6}}\mathrm{d}t}} AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2)))*(2)/(3)*((z)^((3)/(2)))^((- 1)/(6)))/(sqrt(Pi)*(48)^((1)/(6))* GAMMA((5)/(6)))*int(exp(- t)*(t)^(-(1)/(6))*(2 +(t)/((2)/(3)*(z)^((3)/(2))))^(-(1)/(6)), t = 0..infinity) AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])]*Divide[2,3]*((z)^(Divide[3,2]))^(Divide[- 1,6]),Sqrt[Pi]*(48)^(Divide[1,6])* Gamma[Divide[5,6]]]*Integrate[Exp[- t]*(t)^(-Divide[1,6])*(2 +Divide[t,Divide[2,3]*(z)^(Divide[3,2])])^(-Divide[1,6]), {t, 0, Infinity}] Failure Failure Skip
Fail
Complex[-0.014252654553766713, -0.04024893384084034] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.014252654553766713, 0.04024893384084034] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
9.6.E2 Ai ( z ) = π - 1 z / 3 K + 1 / 3 ( ζ ) Airy-Ai 𝑧 superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 1 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\pi^{-1}\sqrt{z/3}K_{+1/% 3}\left(\zeta\right)}} AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2))) AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)}
2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E2 Ai ( z ) = π - 1 z / 3 K - 1 / 3 ( ζ ) Airy-Ai 𝑧 superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 1 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\pi^{-1}\sqrt{z/3}K_{-1/% 3}\left(\zeta\right)}} AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2))) AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)}
2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E2 π - 1 z / 3 K + 1 / 3 ( ζ ) = 1 3 z ( I - 1 / 3 ( ζ ) - I 1 / 3 ( ζ ) ) superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 1 3 𝜁 1 3 𝑧 modified-Bessel-first-kind 1 3 𝜁 modified-Bessel-first-kind 1 3 𝜁 {\displaystyle{\displaystyle\pi^{-1}\sqrt{z/3}K_{+1/3}\left(\zeta\right)=% \tfrac{1}{3}\sqrt{z}\left(I_{-1/3}\left(\zeta\right)-I_{1/3}\left(\zeta\right)% \right)}} (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))) (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E2 π - 1 z / 3 K - 1 / 3 ( ζ ) = 1 3 z ( I - 1 / 3 ( ζ ) - I 1 / 3 ( ζ ) ) superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 1 3 𝜁 1 3 𝑧 modified-Bessel-first-kind 1 3 𝜁 modified-Bessel-first-kind 1 3 𝜁 {\displaystyle{\displaystyle\pi^{-1}\sqrt{z/3}K_{-1/3}\left(\zeta\right)=% \tfrac{1}{3}\sqrt{z}\left(I_{-1/3}\left(\zeta\right)-I_{1/3}\left(\zeta\right)% \right)}} (Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))) (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E2 1 3 z ( I - 1 / 3 ( ζ ) - I 1 / 3 ( ζ ) ) = 1 2 z / 3 e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) 1 3 𝑧 modified-Bessel-first-kind 1 3 𝜁 modified-Bessel-first-kind 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{3}\sqrt{z}\left(I_{-1/3}\left(\zeta% \right)-I_{1/3}\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}{H^% {(1)}_{1/3}}\left(\zeta e^{\pi i/2}\right)}} (1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] Failure Failure Skip
Fail
Complex[-2.8337652800788247, 0.30394618618023783] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
9.6.E2 1 2 z / 3 e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 z / 3 e π i / 3 H - 1 / 3 ( 1 ) ( ζ e π i / 2 ) 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}{H^{(1)}_{1/3}}% \left(\zeta e^{\pi i/2}\right)=\tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}{H^{(1)}_{-1/3% }}\left(\zeta e^{\pi i/2}\right)}} (1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] Successful Failure - Successful
9.6.E2 1 2 z / 3 e π i / 3 H - 1 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 z / 3 e - 2 π i / 3 H 1 / 3 ( 2 ) ( ζ e - π i / 2 ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}{H^{(1)}_{-1/3}}% \left(\zeta e^{\pi i/2}\right)=\tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}{H^{(2)}_{1/% 3}}\left(\zeta e^{-\pi i/2}\right)}} (1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] Failure Failure Skip
Fail
Complex[2.8337652800788256, -0.3039461861802379] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.8337652800788247, -0.3039461861802372] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E2 1 2 z / 3 e - 2 π i / 3 H 1 / 3 ( 2 ) ( ζ e - π i / 2 ) = 1 2 z / 3 e - π i / 3 H - 1 / 3 ( 2 ) ( ζ e - π i / 2 ) 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}{H^{(2)}_{1/3}}% \left(\zeta e^{-\pi i/2}\right)=\tfrac{1}{2}\sqrt{z/3}e^{-\pi i/3}{H^{(2)}_{-1% /3}}\left(\zeta e^{-\pi i/2}\right)}} (1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] Successful Failure - Successful
9.6.E3 Ai ( z ) = - π - 1 ( z / 3 ) K + 2 / 3 ( ζ ) diffop Airy-Ai 1 𝑧 superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 2 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}'\left(z\right)=-\pi^{-1}(z/\sqrt{3})K_% {+2/3}\left(\zeta\right)}} subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2))) (D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
-.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)}
-.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E3 Ai ( z ) = - π - 1 ( z / 3 ) K - 2 / 3 ( ζ ) diffop Airy-Ai 1 𝑧 superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 2 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}'\left(z\right)=-\pi^{-1}(z/\sqrt{3})K_% {-2/3}\left(\zeta\right)}} subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2))) (D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
-.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)}
-.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E3 - π - 1 ( z / 3 ) K + 2 / 3 ( ζ ) = ( z / 3 ) ( I 2 / 3 ( ζ ) - I - 2 / 3 ( ζ ) ) superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 2 3 𝜁 𝑧 3 modified-Bessel-first-kind 2 3 𝜁 modified-Bessel-first-kind 2 3 𝜁 {\displaystyle{\displaystyle-\pi^{-1}(z/\sqrt{3})K_{+2/3}\left(\zeta\right)=(z% /3)\left(I_{2/3}\left(\zeta\right)-I_{-2/3}\left(\zeta\right)\right)}} - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E3 - π - 1 ( z / 3 ) K - 2 / 3 ( ζ ) = ( z / 3 ) ( I 2 / 3 ( ζ ) - I - 2 / 3 ( ζ ) ) superscript 𝜋 1 𝑧 3 modified-Bessel-second-kind 2 3 𝜁 𝑧 3 modified-Bessel-first-kind 2 3 𝜁 modified-Bessel-first-kind 2 3 𝜁 {\displaystyle{\displaystyle-\pi^{-1}(z/\sqrt{3})K_{-2/3}\left(\zeta\right)=(z% /3)\left(I_{2/3}\left(\zeta\right)-I_{-2/3}\left(\zeta\right)\right)}} - (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E3 ( z / 3 ) ( I 2 / 3 ( ζ ) - I - 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) e - π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) 𝑧 3 modified-Bessel-first-kind 2 3 𝜁 modified-Bessel-first-kind 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle(z/3)\left(I_{2/3}\left(\zeta\right)-I_{-2/3}\left% (\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}{H^{(1)}_{2/3}}\left(% \zeta e^{\pi i/2}\right)}} (z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) (z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] Failure Failure Skip
Fail
Complex[0.7883076520663918, -3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
9.6.E3 1 2 ( z / 3 ) e - π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e - 5 π i / 6 H - 2 / 3 ( 1 ) ( ζ e π i / 2 ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 5 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}{H^{(1)}_{2/3}% }\left(\zeta e^{\pi i/2}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}{H^{(1)}_% {-2/3}}\left(\zeta e^{\pi i/2}\right)}} (1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] Successful Failure - Successful
9.6.E3 1 2 ( z / 3 ) e - 5 π i / 6 H - 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 2 ) ( ζ e - π i / 2 ) 1 2 𝑧 3 superscript 𝑒 5 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}{H^{(1)}_{-2/% 3}}\left(\zeta e^{\pi i/2}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}{H^{(2)}_% {2/3}}\left(\zeta e^{-\pi i/2}\right)}} (1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] Failure Failure Skip
Fail
Complex[-0.7883076520663909, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.7883076520663926, 3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E3 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 2 ) ( ζ e - π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H - 2 / 3 ( 2 ) ( ζ e - π i / 2 ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 5 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}{H^{(2)}_{2/3}}% \left(\zeta e^{-\pi i/2}\right)=\tfrac{1}{2}(z/\sqrt{3})e^{5\pi i/6}{H^{(2)}_{% -2/3}}\left(\zeta e^{-\pi i/2}\right)}} (1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] Successful Failure - Successful
9.6.E4 Bi ( z ) = z / 3 ( I 1 / 3 ( ζ ) + I - 1 / 3 ( ζ ) ) Airy-Bi 𝑧 𝑧 3 modified-Bessel-first-kind 1 3 𝜁 modified-Bessel-first-kind 1 3 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)=\sqrt{z/3}\left(I_{1/3}% \left(\zeta\right)+I_{-1/3}\left(\zeta\right)\right)}} AiryBi(z)=sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) AiryBi[z]=Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
.323091265e-1+.116725832*I <- {z = -2^(1/2)-I*2^(1/2)}
.323091265e-1-.116725832*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.032309126109843156, 0.11672583064563491] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.032309126109843156, -0.11672583064563491] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E4 z / 3 ( I 1 / 3 ( ζ ) + I - 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ e - π i / 2 ) + e - π i / 6 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) ) 𝑧 3 modified-Bessel-first-kind 1 3 𝜁 modified-Bessel-first-kind 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\sqrt{z/3}\left(I_{1/3}\left(\zeta\right)+I_{-1/3}% \left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}{H^{(1)}_{1/3% }}\left(\zeta e^{-\pi i/2}\right)+e^{-\pi i/6}{H^{(2)}_{1/3}}\left(\zeta e^{% \pi i/2}\right)\right)}} sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) Failure Failure
Fail
-.1681276560-1.475245556*I <- {z = -2^(1/2)-I*2^(1/2)}
-.1681276560+1.475245556*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.16812765614504083, -1.4752455553622306] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.16812765614504083, 1.4752455553622306] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E4 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ e - π i / 2 ) + e - π i / 6 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) ) = 1 2 z / 3 ( e - π i / 6 H - 1 / 3 ( 1 ) ( ζ e - π i / 2 ) + e π i / 6 H - 1 / 3 ( 2 ) ( ζ e π i / 2 ) ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}{H^{(1)}_{1% /3}}\left(\zeta e^{-\pi i/2}\right)+e^{-\pi i/6}{H^{(2)}_{1/3}}\left(\zeta e^{% \pi i/2}\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}{H^{(1)}_{-1/3}% }\left(\zeta e^{-\pi i/2}\right)+e^{\pi i/6}{H^{(2)}_{-1/3}}\left(\zeta e^{\pi i% /2}\right)\right)}} (1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) Successful Failure - Successful
9.6.E5 Bi ( z ) = ( z / 3 ) ( I 2 / 3 ( ζ ) + I - 2 / 3 ( ζ ) ) diffop Airy-Bi 1 𝑧 𝑧 3 modified-Bessel-first-kind 2 3 𝜁 modified-Bessel-first-kind 2 3 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}'\left(z\right)=(z/\sqrt{3})\left(I_{2/% 3}\left(\zeta\right)+I_{-2/3}\left(\zeta\right)\right)}} subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) (D[AiryBi[temp], {temp, 1}]/.temp-> z)=(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
.181539689+.267445042e-1*I <- {z = -2^(1/2)-I*2^(1/2)}
.181539689-.267445042e-1*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.18153969005752768, 0.026744504839266825] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.18153969005752768, -0.026744504839266825] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E5 ( z / 3 ) ( I 2 / 3 ( ζ ) + I - 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ e - π i / 2 ) + e - π i / 3 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ) 𝑧 3 modified-Bessel-first-kind 2 3 𝜁 modified-Bessel-first-kind 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle(z/\sqrt{3})\left(I_{2/3}\left(\zeta\right)+I_{-2/% 3}\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}{H^{(1)}_% {2/3}}\left(\zeta e^{-\pi i/2}\right)+e^{-\pi i/3}{H^{(2)}_{2/3}}\left(\zeta e% ^{\pi i/2}\right)\right)}} (z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) (z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) Failure Failure
Fail
1.652162135+.3807815744*I <- {z = -2^(1/2)-I*2^(1/2)}
1.652162135-.3807815744*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[1.6521621352721998, 0.3807815736135619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.6521621352721998, -0.3807815736135619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E5 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ e - π i / 2 ) + e - π i / 3 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ) = 1 2 ( z / 3 ) ( e - π i / 3 H - 2 / 3 ( 1 ) ( ζ e - π i / 2 ) + e π i / 3 H - 2 / 3 ( 2 ) ( ζ e π i / 2 ) ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 2 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}{H^{(1)}_% {2/3}}\left(\zeta e^{-\pi i/2}\right)+e^{-\pi i/3}{H^{(2)}_{2/3}}\left(\zeta e% ^{\pi i/2}\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}{H^{(1)}_{-% 2/3}}\left(\zeta e^{-\pi i/2}\right)+e^{\pi i/3}{H^{(2)}_{-2/3}}\left(\zeta e^% {\pi i/2}\right)\right)}} (1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) Successful Failure - Successful
9.6.E6 Ai ( - z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J - 1 / 3 ( ζ ) ) Airy-Ai 𝑧 𝑧 3 Bessel-J 1 3 𝜁 Bessel-J 1 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}\left(-z\right)=(\sqrt{z}/3)\left(J_{1/% 3}\left(\zeta\right)+J_{-1/3}\left(\zeta\right)\right)}} AiryAi(- z)=(sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) AiryAi[- z]=(Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
-.5274645816-.7652257224e-1*I <- {z = -2^(1/2)-I*2^(1/2)}
-.5274645816+.7652257224e-1*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.5274645818155765, -0.0765225723412053] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5274645818155765, 0.0765225723412053] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E6 ( z / 3 ) ( J 1 / 3 ( ζ ) + J - 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e - π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) 𝑧 3 Bessel-J 1 3 𝜁 Bessel-J 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle(\sqrt{z}/3)\left(J_{1/3}\left(\zeta\right)+J_{-1/% 3}\left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}{H^{(1)}_{1% /3}}\left(\zeta\right)+e^{-\pi i/6}{H^{(2)}_{1/3}}\left(\zeta\right)\right)}} (sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2)))) (Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Failure - Successful
9.6.E6 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e - π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e - π i / 6 H - 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H - 1 / 3 ( 2 ) ( ζ ) ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}{H^{(1)}_{1% /3}}\left(\zeta\right)+e^{-\pi i/6}{H^{(2)}_{1/3}}\left(\zeta\right)\right)=% \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}{H^{(1)}_{-1/3}}\left(\zeta\right)+e^{% \pi i/6}{H^{(2)}_{-1/3}}\left(\zeta\right)\right)}} (1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E7 Ai ( - z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) - J - 2 / 3 ( ζ ) ) diffop Airy-Ai 1 𝑧 𝑧 3 Bessel-J 2 3 𝜁 Bessel-J 2 3 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}'\left(-z\right)=(z/3)\left(J_{2/3}% \left(\zeta\right)-J_{-2/3}\left(\zeta\right)\right)}} subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )=(z/ 3)*(BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) (D[AiryAi[temp], {temp, 1}]/.temp-> - z)=(z/ 3)*(BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
-.6239178317-.1120108402*I <- {z = -2^(1/2)-I*2^(1/2)}
-.6239178317+.1120108402*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.6239178317433629, -0.1120108405877985] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6239178317433629, 0.1120108405877985] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E7 ( z / 3 ) ( J 2 / 3 ( ζ ) - J - 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e - π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) 𝑧 3 Bessel-J 2 3 𝜁 Bessel-J 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle(z/3)\left(J_{2/3}\left(\zeta\right)-J_{-2/3}\left% (\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}{H^{(1)}_{2/3}}% \left(\zeta\right)+e^{\pi i/6}{H^{(2)}_{2/3}}\left(\zeta\right)\right)}} (z/ 3)*(BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2)))) (z/ 3)*(BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Failure - Successful
9.6.E7 1 2 ( z / 3 ) ( e - π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e - 5 π i / 6 H - 2 / 3 ( 1 ) ( ζ ) + e 5 π i / 6 H - 2 / 3 ( 2 ) ( ζ ) ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 5 𝜋 𝑖 6 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 5 𝜋 𝑖 6 Hankel-H-2-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}{H^{(1)}% _{2/3}}\left(\zeta\right)+e^{\pi i/6}{H^{(2)}_{2/3}}\left(\zeta\right)\right)=% \tfrac{1}{2}(z/\sqrt{3})\left(e^{-5\pi i/6}{H^{(1)}_{-2/3}}\left(\zeta\right)+% e^{5\pi i/6}{H^{(2)}_{-2/3}}\left(\zeta\right)\right)}} (1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E8 Bi ( - z ) = z / 3 ( J - 1 / 3 ( ζ ) - J 1 / 3 ( ζ ) ) Airy-Bi 𝑧 𝑧 3 Bessel-J 1 3 𝜁 Bessel-J 1 3 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}\left(-z\right)=\sqrt{z/3}\left(J_{-1/3% }\left(\zeta\right)-J_{1/3}\left(\zeta\right)\right)}} AiryBi(- z)=sqrt(z/ 3)*(BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))) AiryBi[- z]=Sqrt[z/ 3]*(BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
.4111747943+1.355498750*I <- {z = -2^(1/2)-I*2^(1/2)}
.4111747943-1.355498750*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.41117479327057227, 1.355498750084894] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.41117479327057227, -1.355498750084894] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E8 z / 3 ( J - 1 / 3 ( ζ ) - J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e - 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) 𝑧 3 Bessel-J 1 3 𝜁 Bessel-J 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle\sqrt{z/3}\left(J_{-1/3}\left(\zeta\right)-J_{1/3}% \left(\zeta\right)\right)=\tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}{H^{(1)}_{1/% 3}}\left(\zeta\right)+e^{-2\pi i/3}{H^{(2)}_{1/3}}\left(\zeta\right)\right)}} sqrt(z/ 3)*(BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2)))) Sqrt[z/ 3]*(BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Failure - Successful
9.6.E8 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e - 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 3 H - 1 / 3 ( 1 ) ( ζ ) + e - π i / 3 H - 1 / 3 ( 2 ) ( ζ ) ) 1 2 𝑧 3 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle\tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}{H^{(1)}_{% 1/3}}\left(\zeta\right)+e^{-2\pi i/3}{H^{(2)}_{1/3}}\left(\zeta\right)\right)=% \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/3}{H^{(1)}_{-1/3}}\left(\zeta\right)+e^{-% \pi i/3}{H^{(2)}_{-1/3}}\left(\zeta\right)\right)}} (1)/(2)*sqrt(z/ 3)*(exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) Divide[1,2]*Sqrt[z/ 3]*(Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E9 Bi ( - z ) = ( z / 3 ) ( J - 2 / 3 ( ζ ) + J 2 / 3 ( ζ ) ) diffop Airy-Bi 1 𝑧 𝑧 3 Bessel-J 2 3 𝜁 Bessel-J 2 3 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}'\left(-z\right)=(z/\sqrt{3})\left(J_{-% 2/3}\left(\zeta\right)+J_{2/3}\left(\zeta\right)\right)}} subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))) (D[AiryBi[temp], {temp, 1}]/.temp-> - z)=(z/Sqrt[3])*(BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Failure Failure
Fail
-1.338452844+1.884861589*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.338452844-1.884861589*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.338452844987923, 1.884861589266007] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.338452844987923, -1.884861589266007] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E9 ( z / 3 ) ( J - 2 / 3 ( ζ ) + J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e - π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) 𝑧 3 Bessel-J 2 3 𝜁 Bessel-J 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle(z/\sqrt{3})\left(J_{-2/3}\left(\zeta\right)+J_{2/% 3}\left(\zeta\right)\right)=\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}{H^{(1)}_% {2/3}}\left(\zeta\right)+e^{-\pi i/3}{H^{(2)}_{2/3}}\left(\zeta\right)\right)}} (z/sqrt(3))*(BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2)))) (z/Sqrt[3])*(BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Failure - Successful
9.6.E9 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ ) + e - π i / 3 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e - π i / 3 H - 2 / 3 ( 1 ) ( ζ ) + e π i / 3 H - 2 / 3 ( 2 ) ( ζ ) ) 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 1 2 𝑧 3 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}{H^{(1)}_% {2/3}}\left(\zeta\right)+e^{-\pi i/3}{H^{(2)}_{2/3}}\left(\zeta\right)\right)=% \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}{H^{(1)}_{-2/3}}\left(\zeta\right)+e% ^{\pi i/3}{H^{(2)}_{-2/3}}\left(\zeta\right)\right)}} (1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) Successful Successful - -
9.6.E11 J + 1 / 3 ( ζ ) = 1 2 3 / z ( 3 Ai ( - z ) - Bi ( - z ) ) Bessel-J 1 3 𝜁 1 2 3 𝑧 3 Airy-Ai 𝑧 Airy-Bi 𝑧 {\displaystyle{\displaystyle J_{+1/3}\left(\zeta\right)=\tfrac{1}{2}\sqrt{3/z}% \left(\sqrt{3}\mathrm{Ai}\left(-z\right)-\mathrm{Bi}\left(-z\right)\right)}} BesselJ(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(sqrt(3)*AiryAi(- z)- AiryBi(- z)) BesselJ[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(Sqrt[3]*AiryAi[- z]- AiryBi[- z]) Failure Failure
Fail
-.5314179186+1.098214195*I <- {z = -2^(1/2)-I*2^(1/2)}
-.5314179186-1.098214195*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.531417918807772, 1.09821419470116] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.531417918807772, -1.09821419470116] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E11 J - 1 / 3 ( ζ ) = 1 2 3 / z ( 3 Ai ( - z ) + Bi ( - z ) ) Bessel-J 1 3 𝜁 1 2 3 𝑧 3 Airy-Ai 𝑧 Airy-Bi 𝑧 {\displaystyle{\displaystyle J_{-1/3}\left(\zeta\right)=\tfrac{1}{2}\sqrt{3/z}% \left(\sqrt{3}\mathrm{Ai}\left(-z\right)+\mathrm{Bi}\left(-z\right)\right)}} BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(sqrt(3)*AiryAi(- z)+ AiryBi(- z)) BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(Sqrt[3]*AiryAi[- z]+ AiryBi[- z]) Failure Failure
Fail
.8096382420-.23450870e-2*I <- {z = -2^(1/2)-I*2^(1/2)}
.8096382420+.23450870e-2*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.8096382422763857, -0.0023450862884800416] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.8096382422763857, 0.0023450862884800416] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E12 J + 2 / 3 ( ζ ) = 1 2 ( 3 / z ) ( + 3 Ai ( - z ) + Bi ( - z ) ) Bessel-J 2 3 𝜁 1 2 3 𝑧 3 diffop Airy-Ai 1 𝑧 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle J_{+2/3}\left(\zeta\right)=\tfrac{1}{2}(\sqrt{3}/% z)\left(+\sqrt{3}\mathrm{Ai}'\left(-z\right)+\mathrm{Bi}'\left(-z\right)\right% )}} BesselJ(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(+sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) BesselJ[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(+Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z)) Failure Failure
Fail
-.2229822889+1.258414134*I <- {z = -2^(1/2)-I*2^(1/2)}
-.2229822889-1.258414134*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.22298228919670726, 1.2584141341459216] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.22298228919670726, -1.2584141341459216] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E12 J - 2 / 3 ( ζ ) = 1 2 ( 3 / z ) ( - 3 Ai ( - z ) + Bi ( - z ) ) Bessel-J 2 3 𝜁 1 2 3 𝑧 3 diffop Airy-Ai 1 𝑧 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle J_{-2/3}\left(\zeta\right)=\tfrac{1}{2}(\sqrt{3}/% z)\left(-\sqrt{3}\mathrm{Ai}'\left(-z\right)+\mathrm{Bi}'\left(-z\right)\right% )}} BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(-sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(-Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z)) Failure Failure
Fail
.5575879430+.7154547765*I <- {z = -2^(1/2)-I*2^(1/2)}
.5575879430-.7154547765*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.5575879428157583, 0.7154547769715692] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.5575879428157583, -0.7154547769715692] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E13 I + 1 / 3 ( ζ ) = 1 2 3 / z ( - 3 Ai ( z ) + Bi ( z ) ) modified-Bessel-first-kind 1 3 𝜁 1 2 3 𝑧 3 Airy-Ai 𝑧 Airy-Bi 𝑧 {\displaystyle{\displaystyle I_{+1/3}\left(\zeta\right)=\tfrac{1}{2}\sqrt{3/z}% \left(-\sqrt{3}\mathrm{Ai}\left(z\right)+\mathrm{Bi}\left(z\right)\right)}} BesselI(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(-sqrt(3)*AiryAi(z)+ AiryBi(z)) BesselI[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(-Sqrt[3]*AiryAi[z]+ AiryBi[z]) Failure Failure
Fail
1.506527799+2.607865458*I <- {z = -2^(1/2)-I*2^(1/2)}
1.506527799-2.607865458*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[1.5065278006053275, 2.6078654586738588] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.5065278006053275, -2.6078654586738588] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E13 I - 1 / 3 ( ζ ) = 1 2 3 / z ( + 3 Ai ( z ) + Bi ( z ) ) modified-Bessel-first-kind 1 3 𝜁 1 2 3 𝑧 3 Airy-Ai 𝑧 Airy-Bi 𝑧 {\displaystyle{\displaystyle I_{-1/3}\left(\zeta\right)=\tfrac{1}{2}\sqrt{3/z}% \left(+\sqrt{3}\mathrm{Ai}\left(z\right)+\mathrm{Bi}\left(z\right)\right)}} BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(+sqrt(3)*AiryAi(z)+ AiryBi(z)) BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(+Sqrt[3]*AiryAi[z]+ AiryBi[z]) Failure Failure
Fail
-1.389593520-2.699131954*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.389593520+2.699131954*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.3895935221249858, -2.6991319545588484] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.3895935221249858, 2.6991319545588484] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E14 I + 2 / 3 ( ζ ) = 1 2 ( 3 / z ) ( + 3 Ai ( z ) + Bi ( z ) ) modified-Bessel-first-kind 2 3 𝜁 1 2 3 𝑧 3 diffop Airy-Ai 1 𝑧 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle I_{+2/3}\left(\zeta\right)=\tfrac{1}{2}(\sqrt{3}/% z)\left(+\sqrt{3}\mathrm{Ai}'\left(z\right)+\mathrm{Bi}'\left(z\right)\right)}} BesselI(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(+sqrt(3)*subs( temp=z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=z, diff( AiryBi(temp), temp$(1) ) )) BesselI[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(+Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> z)) Failure Failure
Fail
1.494369018+2.219325646*I <- {z = -2^(1/2)-I*2^(1/2)}
1.494369018-2.219325646*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[1.4943690186714658, 2.219325646151564] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.4943690186714658, -2.219325646151564] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E14 I - 2 / 3 ( ζ ) = 1 2 ( 3 / z ) ( - 3 Ai ( z ) + Bi ( z ) ) modified-Bessel-first-kind 2 3 𝜁 1 2 3 𝑧 3 diffop Airy-Ai 1 𝑧 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle I_{-2/3}\left(\zeta\right)=\tfrac{1}{2}(\sqrt{3}/% z)\left(-\sqrt{3}\mathrm{Ai}'\left(z\right)+\mathrm{Bi}'\left(z\right)\right)}} BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(-sqrt(3)*subs( temp=z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=z, diff( AiryBi(temp), temp$(1) ) )) BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(-Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> z)) Failure Failure
Fail
-1.366821518-2.314117950*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.366821518+2.314117950*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.366821518925578, -2.3141179507576517] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.366821518925578, 2.3141179507576517] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E15 K + 1 / 3 ( ζ ) = π 3 / z Ai ( z ) modified-Bessel-second-kind 1 3 𝜁 𝜋 3 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle K_{+1/3}\left(\zeta\right)=\pi\sqrt{3/z}\mathrm{% Ai}\left(z\right)}} BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))= Pi*sqrt(3/ z)*AiryAi(z) BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Pi*Sqrt[3/ z]*AiryAi[z] Failure Failure
Fail
-5.252983010-9.625828533*I <- {z = -2^(1/2)-I*2^(1/2)}
-5.252983010+9.625828533*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-5.252983013913404, -9.625828534114124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.252983013913404, 9.625828534114124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E15 K - 1 / 3 ( ζ ) = π 3 / z Ai ( z ) modified-Bessel-second-kind 1 3 𝜁 𝜋 3 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle K_{-1/3}\left(\zeta\right)=\pi\sqrt{3/z}\mathrm{% Ai}\left(z\right)}} BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))= Pi*sqrt(3/ z)*AiryAi(z) BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Pi*Sqrt[3/ z]*AiryAi[z] Failure Failure
Fail
-5.252983010-9.625828533*I <- {z = -2^(1/2)-I*2^(1/2)}
-5.252983010+9.625828533*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-5.252983013913404, -9.625828534114124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.252983013913404, 9.625828534114124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E16 K + 2 / 3 ( ζ ) = - π ( 3 / z ) Ai ( z ) modified-Bessel-second-kind 2 3 𝜁 𝜋 3 𝑧 diffop Airy-Ai 1 𝑧 {\displaystyle{\displaystyle K_{+2/3}\left(\zeta\right)=-\pi(\sqrt{3}/z)% \mathrm{Ai}'\left(z\right)}} BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))= - Pi*(sqrt(3)/ z)* subs( temp=z, diff( AiryAi(temp), temp$(1) ) ) BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= - Pi*(Sqrt[3]/ z)* (D[AiryAi[temp], {temp, 1}]/.temp-> z) Failure Failure
Fail
-5.189625577-8.222757114*I <- {z = -2^(1/2)-I*2^(1/2)}
-5.189625577+8.222757114*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-5.189625578046477, -8.222757113865619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.189625578046477, 8.222757113865619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E16 K - 2 / 3 ( ζ ) = - π ( 3 / z ) Ai ( z ) modified-Bessel-second-kind 2 3 𝜁 𝜋 3 𝑧 diffop Airy-Ai 1 𝑧 {\displaystyle{\displaystyle K_{-2/3}\left(\zeta\right)=-\pi(\sqrt{3}/z)% \mathrm{Ai}'\left(z\right)}} BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))= - Pi*(sqrt(3)/ z)* subs( temp=z, diff( AiryAi(temp), temp$(1) ) ) BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= - Pi*(Sqrt[3]/ z)* (D[AiryAi[temp], {temp, 1}]/.temp-> z) Failure Failure
Fail
-5.189625577-8.222757114*I <- {z = -2^(1/2)-I*2^(1/2)}
-5.189625577+8.222757114*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-5.189625578046477, -8.222757113865619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.189625578046477, 8.222757113865619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E17 H 1 / 3 ( 1 ) ( ζ ) = e - π i / 3 H - 1 / 3 ( 1 ) ( ζ ) Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle{H^{(1)}_{1/3}}\left(\zeta\right)=e^{-\pi i/3}{H^{% (1)}_{-1/3}}\left(\zeta\right)}} HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))= exp(- Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))) HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[- Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] Successful Successful - -
9.6.E17 e - π i / 3 H - 1 / 3 ( 1 ) ( ζ ) = e - π i / 6 3 / z ( Ai ( - z ) - i Bi ( - z ) ) superscript 𝑒 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 6 3 𝑧 Airy-Ai 𝑧 𝑖 Airy-Bi 𝑧 {\displaystyle{\displaystyle e^{-\pi i/3}{H^{(1)}_{-1/3}}\left(\zeta\right)=e^% {-\pi i/6}\sqrt{3/z}\left(\mathrm{Ai}\left(-z\right)-i\mathrm{Bi}\left(-z% \right)\right)}} exp(- Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2)))= exp(- Pi*I/ 6)*sqrt(3/ z)*(AiryAi(- z)- I*AiryBi(- z)) Exp[- Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[- Pi*I/ 6]*Sqrt[3/ z]*(AiryAi[- z]- I*AiryBi[- z]) Failure Failure
Fail
-1.168180054-.1434897976*I <- {z = -2^(1/2)-I*2^(1/2)}
.1053442159-2.339918189*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.1681800521462087, -0.14348979802367162] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.10534421453066467, -2.3399181874259916] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E18 H 2 / 3 ( 1 ) ( ζ ) = e - 2 π i / 3 H - 2 / 3 ( 1 ) ( ζ ) Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle{H^{(1)}_{2/3}}\left(\zeta\right)=e^{-2\pi i/3}{H^% {(1)}_{-2/3}}\left(\zeta\right)}} HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))= exp(- 2*Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))) HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[- 2*Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] Successful Successful - -
9.6.E18 e - 2 π i / 3 H - 2 / 3 ( 1 ) ( ζ ) = e π i / 6 ( 3 / z ) ( Ai ( - z ) - i Bi ( - z ) ) superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-1-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 6 3 𝑧 diffop Airy-Ai 1 𝑧 𝑖 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle e^{-2\pi i/3}{H^{(1)}_{-2/3}}\left(\zeta\right)=e% ^{\pi i/6}(\sqrt{3}/z)\left(\mathrm{Ai}'\left(-z\right)-i\mathrm{Bi}'\left(-z% \right)\right)}} exp(- 2*Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2)))= exp(Pi*I/ 6)*(sqrt(3)/ z)*(subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )- I*subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) Exp[- 2*Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[Pi*I/ 6]*(Sqrt[3]/ z)*((D[AiryAi[temp], {temp, 1}]/.temp-> - z)- I*(D[AiryBi[temp], {temp, 1}]/.temp-> - z)) Failure Failure
Fail
1.329699466+.7433059206*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.775664044-1.773522348*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[1.3296994660595483, 0.7433059210750237] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.775664044452963, -1.7735223472168191] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E19 H 1 / 3 ( 2 ) ( ζ ) = e π i / 3 H - 1 / 3 ( 2 ) ( ζ ) Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 {\displaystyle{\displaystyle{H^{(2)}_{1/3}}\left(\zeta\right)=e^{\pi i/3}{H^{(% 2)}_{-1/3}}\left(\zeta\right)}} HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2)))= exp(Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))) HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] Successful Successful - -
9.6.E19 e π i / 3 H - 1 / 3 ( 2 ) ( ζ ) = e π i / 6 3 / z ( Ai ( - z ) + i Bi ( - z ) ) superscript 𝑒 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 1 3 𝜁 superscript 𝑒 𝜋 𝑖 6 3 𝑧 Airy-Ai 𝑧 𝑖 Airy-Bi 𝑧 {\displaystyle{\displaystyle e^{\pi i/3}{H^{(2)}_{-1/3}}\left(\zeta\right)=e^{% \pi i/6}\sqrt{3/z}\left(\mathrm{Ai}\left(-z\right)+i\mathrm{Bi}\left(-z\right)% \right)}} exp(Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2)))= exp(Pi*I/ 6)*sqrt(3/ z)*(AiryAi(- z)+ I*AiryBi(- z)) Exp[Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[Pi*I/ 6]*Sqrt[3/ z]*(AiryAi[- z]+ I*AiryBi[- z]) Failure Failure
Fail
.1053442159+2.339918189*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.168180054+.1434897976*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.10534421453066467, 2.3399181874259916] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.1681800521462087, 0.14348979802367162] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E20 H 2 / 3 ( 2 ) ( ζ ) = e 2 π i / 3 H - 2 / 3 ( 2 ) ( ζ ) Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 {\displaystyle{\displaystyle{H^{(2)}_{2/3}}\left(\zeta\right)=e^{2\pi i/3}{H^{% (2)}_{-2/3}}\left(\zeta\right)}} HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2)))= exp(2*Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))) HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[2*Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] Successful Successful - -
9.6.E20 e 2 π i / 3 H - 2 / 3 ( 2 ) ( ζ ) = e - π i / 6 ( 3 / z ) ( Ai ( - z ) + i Bi ( - z ) ) superscript 𝑒 2 𝜋 𝑖 3 Hankel-H-2-Bessel-third-kind 2 3 𝜁 superscript 𝑒 𝜋 𝑖 6 3 𝑧 diffop Airy-Ai 1 𝑧 𝑖 diffop Airy-Bi 1 𝑧 {\displaystyle{\displaystyle e^{2\pi i/3}{H^{(2)}_{-2/3}}\left(\zeta\right)=e^% {-\pi i/6}(\sqrt{3}/z)\left(\mathrm{Ai}'\left(-z\right)+i\mathrm{Bi}'\left(-z% \right)\right)}} exp(2*Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2)))= exp(- Pi*I/ 6)*(sqrt(3)/ z)*(subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ I*subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) Exp[2*Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[- Pi*I/ 6]*(Sqrt[3]/ z)*((D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ I*(D[AiryBi[temp], {temp, 1}]/.temp-> - z)) Failure Failure
Fail
-1.775664044+1.773522348*I <- {z = -2^(1/2)-I*2^(1/2)}
1.329699466-.7433059206*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.775664044452963, 1.7735223472168191] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.3296994660595483, -0.7433059210750237] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E22 Ai ( z ) = - 1 2 π - 1 / 2 z 1 / 4 W 0 , 2 / 3 ( 2 ζ ) diffop Airy-Ai 1 𝑧 1 2 superscript 𝜋 1 2 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-W 0 2 3 2 𝜁 {\displaystyle{\displaystyle\mathrm{Ai}'\left(z\right)=-\tfrac{1}{2}\pi^{-1/2}% z^{1/4}W_{0,2/3}\left(2\zeta\right)}} subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= -(1)/(2)*(Pi)^(- 1/ 2)* (z)^(1/ 4)* WhittakerW(0, 2/ 3, 2*(2)/(3)*(z)^((3)/(2))) (D[AiryAi[temp], {temp, 1}]/.temp-> z)= -Divide[1,2]*(Pi)^(- 1/ 2)* (z)^(1/ 4)* WhittakerW[0, 2/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
.89148347e-2-.60513229e-1*I <- {z = -2^(1/2)-I*2^(1/2)}
.89148347e-2+.60513229e-1*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.008914834946421868, -0.06051323001917441] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.008914834946421868, 0.06051323001917441] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E22 - 1 2 π - 1 / 2 z 1 / 4 W 0 , 2 / 3 ( 2 ζ ) = - 3 1 / 6 π - 1 / 2 ζ 4 / 3 e - ζ U ( 7 6 , 7 3 , 2 ζ ) 1 2 superscript 𝜋 1 2 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-W 0 2 3 2 𝜁 superscript 3 1 6 superscript 𝜋 1 2 superscript 𝜁 4 3 superscript 𝑒 𝜁 Kummer-confluent-hypergeometric-U 7 6 7 3 2 𝜁 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi^{-1/2}z^{1/4}W_{0,2/3}\left(2% \zeta\right)=-3^{1/6}\pi^{-1/2}\zeta^{4/3}e^{-\zeta}U\left(\tfrac{7}{6},\tfrac% {7}{3},2\zeta\right)}} -(1)/(2)*(Pi)^(- 1/ 2)* (z)^(1/ 4)* WhittakerW(0, 2/ 3, 2*(2)/(3)*(z)^((3)/(2)))= - (3)^(1/ 6)* (Pi)^(- 1/ 2)*(2)/(3)*((z)^((3)/(2)))^(4/ 3)* exp(-(2)/(3)*(z)^((3)/(2)))*KummerU((7)/(6), (7)/(3), 2*(2)/(3)*(z)^((3)/(2))) -Divide[1,2]*(Pi)^(- 1/ 2)* (z)^(1/ 4)* WhittakerW[0, 2/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])]= - (3)^(1/ 6)* (Pi)^(- 1/ 2)*Divide[2,3]*((z)^(Divide[3,2]))^(4/ 3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricU[Divide[7,6], Divide[7,3], 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
-.316154866e-3-.241774161e-1*I <- {z = 2^(1/2)+I*2^(1/2)}
-.316154866e-3+.241774161e-1*I <- {z = 2^(1/2)-I*2^(1/2)}
1.587390115+1.153455370*I <- {z = -2^(1/2)-I*2^(1/2)}
1.587390115-1.153455370*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-3.1615464995420756*^-4, -0.024177416299250604] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.1615464995420756*^-4, 0.024177416299250604] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.587390116444673, 1.153455375076458] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.587390116444673, -1.153455375076458] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E23 Bi ( z ) = 1 2 1 / 3 Γ ( 2 3 ) z - 1 / 4 M 0 , - 1 / 3 ( 2 ζ ) + 3 2 5 / 3 Γ ( 1 3 ) z - 1 / 4 M 0 , 1 / 3 ( 2 ζ ) Airy-Bi 𝑧 1 superscript 2 1 3 Euler-Gamma 2 3 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-M 0 1 3 2 𝜁 3 superscript 2 5 3 Euler-Gamma 1 3 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-M 0 1 3 2 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)=\frac{1}{2^{1/3}\Gamma% \left(\tfrac{2}{3}\right)}z^{-1/4}M_{0,-1/3}\left(2\zeta\right)+\frac{3}{2^{5/% 3}\Gamma\left(\tfrac{1}{3}\right)}z^{-1/4}M_{0,1/3}\left(2\zeta\right)}} AiryBi(z)=(1)/((2)^(1/ 3)* GAMMA((2)/(3)))*(z)^(- 1/ 4)* WhittakerM(0, - 1/ 3, 2*(2)/(3)*(z)^((3)/(2)))+(3)/((2)^(5/ 3)* GAMMA((1)/(3)))*(z)^(- 1/ 4)* WhittakerM(0, 1/ 3, 2*(2)/(3)*(z)^((3)/(2))) AiryBi[z]=Divide[1,(2)^(1/ 3)* Gamma[Divide[2,3]]]*(z)^(- 1/ 4)* WhittakerM[0, - 1/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[3,(2)^(5/ 3)* Gamma[Divide[1,3]]]*(z)^(- 1/ 4)* WhittakerM[0, 1/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
-.3039461866-2.833765278*I <- {z = -2^(1/2)-I*2^(1/2)}
-.3039461866+2.833765278*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.30394618618023905, -2.8337652800788256] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.30394618618023905, 2.8337652800788256] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E24 Bi ( z ) = 2 1 / 3 Γ ( 1 3 ) z 1 / 4 M 0 , - 2 / 3 ( 2 ζ ) + 3 2 10 / 3 Γ ( 2 3 ) z 1 / 4 M 0 , 2 / 3 ( 2 ζ ) diffop Airy-Bi 1 𝑧 superscript 2 1 3 Euler-Gamma 1 3 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-M 0 2 3 2 𝜁 3 superscript 2 10 3 Euler-Gamma 2 3 superscript 𝑧 1 4 Whittaker-confluent-hypergeometric-M 0 2 3 2 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}'\left(z\right)=\frac{2^{1/3}}{\Gamma% \left(\tfrac{1}{3}\right)}z^{1/4}M_{0,-2/3}\left(2\zeta\right)+\frac{3}{2^{10/% 3}\Gamma\left(\tfrac{2}{3}\right)}z^{1/4}M_{0,2/3}\left(2\zeta\right)}} subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=((2)^(1/ 3))/(GAMMA((1)/(3)))*(z)^(1/ 4)* WhittakerM(0, - 2/ 3, 2*(2)/(3)*(z)^((3)/(2)))+(3)/((2)^(10/ 3)* GAMMA((2)/(3)))*(z)^(1/ 4)* WhittakerM(0, 2/ 3, 2*(2)/(3)*(z)^((3)/(2))) (D[AiryBi[temp], {temp, 1}]/.temp-> z)=Divide[(2)^(1/ 3),Gamma[Divide[1,3]]]*(z)^(1/ 4)* WhittakerM[0, - 2/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[3,(2)^(10/ 3)* Gamma[Divide[2,3]]]*(z)^(1/ 4)* WhittakerM[0, 2/ 3, 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
3.485863958+.7883076513*I <- {z = -2^(1/2)-I*2^(1/2)}
3.485863958-.7883076513*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[3.485863960601927, 0.7883076520663903] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.485863960601927, -0.7883076520663903] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E25 Bi ( z ) = 1 3 1 / 6 Γ ( 2 3 ) e - ζ F 1 1 ( 1 6 ; 1 3 ; 2 ζ ) + 3 5 / 6 2 2 / 3 Γ ( 1 3 ) ζ 2 / 3 e - ζ F 1 1 ( 5 6 ; 5 3 ; 2 ζ ) Airy-Bi 𝑧 1 superscript 3 1 6 Euler-Gamma 2 3 superscript 𝑒 𝜁 Kummer-confluent-hypergeometric-M-as-1F1 1 6 1 3 2 𝜁 superscript 3 5 6 superscript 2 2 3 Euler-Gamma 1 3 superscript 𝜁 2 3 superscript 𝑒 𝜁 Kummer-confluent-hypergeometric-M-as-1F1 5 6 5 3 2 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}\left(z\right)=\frac{1}{3^{1/6}\Gamma% \left(\tfrac{2}{3}\right)}e^{-\zeta}{{}_{1}F_{1}}\left(\tfrac{1}{6};\tfrac{1}{% 3};2\zeta\right)+\frac{3^{5/6}}{2^{2/3}\Gamma\left(\tfrac{1}{3}\right)}\zeta^{% 2/3}e^{-\zeta}{{}_{1}F_{1}}\left(\tfrac{5}{6};\tfrac{5}{3};2\zeta\right)}} AiryBi(z)=(1)/((3)^(1/ 6)* GAMMA((2)/(3)))*exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(1)/(6)], [(1)/(3)], 2*(2)/(3)*(z)^((3)/(2)))+((3)^(5/ 6))/((2)^(2/ 3)* GAMMA((1)/(3)))*(2)/(3)*((z)^((3)/(2)))^(2/ 3)* exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(5)/(6)], [(5)/(3)], 2*(2)/(3)*(z)^((3)/(2))) AiryBi[z]=Divide[1,(3)^(1/ 6)* Gamma[Divide[2,3]]]*Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[1,6]}, {Divide[1,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[(3)^(5/ 6),(2)^(2/ 3)* Gamma[Divide[1,3]]]*Divide[2,3]*((z)^(Divide[3,2]))^(2/ 3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[5,6]}, {Divide[5,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
.147168161e-1+.712025224e-1*I <- {z = 2^(1/2)+I*2^(1/2)}
.147168161e-1-.712025224e-1*I <- {z = 2^(1/2)-I*2^(1/2)}
-1.474010305-1.772597131*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.474010305+1.772597131*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.014716817548916183, 0.07120252241962582] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.014716817548916183, -0.07120252241962582] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.474010305021376, -1.7725971311665962] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.474010305021376, 1.7725971311665962] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.6.E26 Bi ( z ) = 3 1 / 6 Γ ( 1 3 ) e - ζ F 1 1 ( - 1 6 ; - 1 3 ; 2 ζ ) + 3 7 / 6 2 7 / 3 Γ ( 2 3 ) ζ 4 / 3 e - ζ F 1 1 ( 7 6 ; 7 3 ; 2 ζ ) diffop Airy-Bi 1 𝑧 superscript 3 1 6 Euler-Gamma 1 3 superscript 𝑒 𝜁 Kummer-confluent-hypergeometric-M-as-1F1 1 6 1 3 2 𝜁 superscript 3 7 6 superscript 2 7 3 Euler-Gamma 2 3 superscript 𝜁 4 3 superscript 𝑒 𝜁 Kummer-confluent-hypergeometric-M-as-1F1 7 6 7 3 2 𝜁 {\displaystyle{\displaystyle\mathrm{Bi}'\left(z\right)=\frac{3^{1/6}}{\Gamma% \left(\tfrac{1}{3}\right)}e^{-\zeta}{{}_{1}F_{1}}\left(-\tfrac{1}{6};-\tfrac{1% }{3};2\zeta\right)+\frac{3^{7/6}}{2^{7/3}\Gamma\left(\tfrac{2}{3}\right)}\zeta% ^{4/3}e^{-\zeta}{{}_{1}F_{1}}\left(\tfrac{7}{6};\tfrac{7}{3};2\zeta\right)}} subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=((3)^(1/ 6))/(GAMMA((1)/(3)))*exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([-(1)/(6)], [-(1)/(3)], 2*(2)/(3)*(z)^((3)/(2)))+((3)^(7/ 6))/((2)^(7/ 3)* GAMMA((2)/(3)))*(2)/(3)*((z)^((3)/(2)))^(4/ 3)* exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(7)/(6)], [(7)/(3)], 2*(2)/(3)*(z)^((3)/(2))) (D[AiryBi[temp], {temp, 1}]/.temp-> z)=Divide[(3)^(1/ 6),Gamma[Divide[1,3]]]*Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{-Divide[1,6]}, {-Divide[1,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[(3)^(7/ 6),(2)^(7/ 3)* Gamma[Divide[2,3]]]*Divide[2,3]*((z)^(Divide[3,2]))^(4/ 3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[7,6]}, {Divide[7,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])] Failure Failure
Fail
.522018891e-1-.1117022869*I <- {z = 2^(1/2)+I*2^(1/2)}
.522018891e-1+.1117022869*I <- {z = 2^(1/2)-I*2^(1/2)}
2.583360720+2.078187022*I <- {z = -2^(1/2)-I*2^(1/2)}
2.583360720-2.078187022*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0522018904439151, -0.11170228512421254] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0522018904439151, 0.11170228512421254] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.5833607207543476, 2.078187024166196] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.5833607207543476, -2.078187024166196] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.7#Ex3 Ai ( x ) e - ξ 2 π x 1 / 4 Airy-Ai 𝑥 superscript 𝑒 𝜉 2 𝜋 superscript 𝑥 1 4 {\displaystyle{\displaystyle\mathrm{Ai}\left(x\right)<=\frac{e^{-\xi}}{2\sqrt{% \pi}x^{1/4}}}} AiryAi(x)< =(exp(- xi))/(2*sqrt(Pi)*(x)^(1/ 4)) AiryAi[x]< =Divide[Exp[- \[Xi]],2*Sqrt[Pi]*(x)^(1/ 4)] Failure Failure Successful Successful
9.7#Ex4 | Ai ( x ) | x 1 / 4 e - ξ 2 π ( 1 + 7 72 ξ ) diffop Airy-Ai 1 𝑥 superscript 𝑥 1 4 superscript 𝑒 𝜉 2 𝜋 1 7 72 𝜉 {\displaystyle{\displaystyle|\mathrm{Ai}'\left(x\right)|<=\frac{x^{1/4}e^{-\xi% }}{2\sqrt{\pi}}\left(1+\frac{7}{72\xi}\right)}} abs(subs( temp=x, diff( AiryAi(temp), temp$(1) ) ))< =((x)^(1/ 4)* exp(- xi))/(2*sqrt(Pi))*(1 +(7)/(72*xi)) Abs[D[AiryAi[temp], {temp, 1}]/.temp-> x]< =Divide[(x)^(1/ 4)* Exp[- \[Xi]],2*Sqrt[Pi]]*(1 +Divide[7,72*\[Xi]]) Failure Failure Successful Successful
9.7#Ex5 Bi ( x ) e ξ π x 1 / 4 ( 1 + ( χ ( 7 6 ) + 1 ) 5 72 ξ ) Airy-Bi 𝑥 𝜉 superscript 𝑥 1 4 1 𝜒 7 6 1 5 72 𝜉 {\displaystyle{\displaystyle\mathrm{Bi}\left(x\right)<=\frac{{\mathrm{e}^{\xi}% }}{\sqrt{\pi}x^{1/4}}\left(1+\left(\chi(\tfrac{7}{6})+1\right)\frac{5}{72\xi}% \right)}} AiryBi(x)< =(exp(xi))/(sqrt(Pi)*(x)^(1/ 4))*(1 +(chi*((7)/(6))+ 1)*(5)/(72*xi)) AiryBi[x]< =Divide[Exp[\[Xi]],Sqrt[Pi]*(x)^(1/ 4)]*(1 +(\[Chi]*(Divide[7,6])+ 1)*Divide[5,72*\[Xi]]) Failure Failure Successful Successful
9.7#Ex6 Bi ( x ) x 1 / 4 e ξ π ( 1 + ( π 2 + 1 ) 7 72 ξ ) diffop Airy-Bi 1 𝑥 superscript 𝑥 1 4 superscript 𝑒 𝜉 𝜋 1 2 1 7 72 𝜉 {\displaystyle{\displaystyle\mathrm{Bi}'\left(x\right)<=\frac{x^{1/4}e^{\xi}}{% \sqrt{\pi}}\left(1+\left(\frac{\pi}{2}+1\right)\frac{7}{72\xi}\right)}} subs( temp=x, diff( AiryBi(temp), temp$(1) ) )< =((x)^(1/ 4)* exp(xi))/(sqrt(Pi))*(1 +((Pi)/(2)+ 1)*(7)/(72*xi)) (D[AiryBi[temp], {temp, 1}]/.temp-> x)< =Divide[(x)^(1/ 4)* Exp[\[Xi]],Sqrt[Pi]]*(1 +(Divide[Pi,2]+ 1)*Divide[7,72*\[Xi]]) Failure Failure Successful Successful
9.7.E17 { cases {\displaystyle{\displaystyle\begin{cases}1,&|\operatorname{ph}z|<=\tfrac{1}{3}% \pi,\\ \min\left(|\csc\left(\operatorname{ph}\zeta\right)|,\chi(n+\sigma)+1\right),&% \tfrac{1}{3}\pi}}\)\@add@PDF@RDFa@triples\end{document}\end{cases} Error Error - -
9.7.E18 Ai ( z ) = e - ζ 2 π z 1 / 4 ( k = 0 n - 1 ( - 1 ) k u k ζ k + R n ( z ) ) Airy-Ai 𝑧 superscript 𝑒 𝜁 2 𝜋 superscript 𝑧 1 4 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 subscript 𝑢 𝑘 superscript 𝜁 𝑘 subscript 𝑅 𝑛 𝑧 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{e^{-\zeta}}{2\sqrt% {\pi}z^{1/4}}\left(\sum_{k=0}^{n-1}(-1)^{k}\frac{u_{k}}{\zeta^{k}}+R_{n}(z)% \right)}} AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2))))/(2*sqrt(Pi)*(z)^(1/ 4))*(sum((- 1)^(k)*(u[k])/((2)/(3)*((z)^((3)/(2)))^(k)), k = 0..n - 1)+ R[n]*(z)) AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])],2*Sqrt[Pi]*(z)^(1/ 4)]*(Sum[(- 1)^(k)*Divide[Subscript[u, k],Divide[2,3]*((z)^(Divide[3,2]))^(k)], {k, 0, n - 1}]+ Subscript[R, n]*(z)) Failure Failure Skip Skip
9.7.E19 Ai ( z ) = - z 1 / 4 e - ζ 2 π ( k = 0 n - 1 ( - 1 ) k v k ζ k + S n ( z ) ) diffop Airy-Ai 1 𝑧 superscript 𝑧 1 4 superscript 𝑒 𝜁 2 𝜋 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 subscript 𝑣 𝑘 superscript 𝜁 𝑘 subscript 𝑆 𝑛 𝑧 {\displaystyle{\displaystyle\mathrm{Ai}'\left(z\right)=-\frac{z^{1/4}e^{-\zeta% }}{2\sqrt{\pi}}\left(\sum_{k=0}^{n-1}(-1)^{k}\frac{v_{k}}{\zeta^{k}}+S_{n}(z)% \right)}} subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= -((z)^(1/ 4)* exp(-(2)/(3)*(z)^((3)/(2))))/(2*sqrt(Pi))*(sum((- 1)^(k)*(v[k])/((2)/(3)*((z)^((3)/(2)))^(k)), k = 0..n - 1)+ S[n]*(z)) (D[AiryAi[temp], {temp, 1}]/.temp-> z)= -Divide[(z)^(1/ 4)* Exp[-Divide[2,3]*(z)^(Divide[3,2])],2*Sqrt[Pi]]*(Sum[(- 1)^(k)*Divide[Subscript[v, k],Divide[2,3]*((z)^(Divide[3,2]))^(k)], {k, 0, n - 1}]+ Subscript[S, n]*(z)) Failure Failure Skip Skip
9.7.E22 G p ( z ) = e z 2 π Γ ( p ) Γ ( 1 - p , z ) rescaled-terminant-function 𝑝 𝑧 superscript 𝑒 𝑧 2 𝜋 Euler-Gamma 𝑝 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle G_{p}\left(z\right)=\frac{e^{z}}{2\pi}\Gamma\left% (p\right)\Gamma\left(1-p,z\right)}} (exp(z)/(2*Pi))*GAMMA(p)*GAMMA(1-p,z)=(exp(z))/(2*Pi)*GAMMA(p)*GAMMA(1 - p, z) Error Successful Error - -
9.8.E1 Ai ( x ) = M ( x ) sin θ ( x ) Airy-Ai 𝑥 modulus-Airy-M 𝑥 phase-Airy-Theta 𝑥 {\displaystyle{\displaystyle\mathrm{Ai}\left(x\right)=M\left(x\right)\sin% \theta\left(x\right)}} AiryAi(x)= sqrt(AiryAi(x)^2+AiryBi(x)^2)*sin(arctan(AiryAi(x)/AiryBi(x))) AiryAi[x]= Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]] Failure Failure Successful Successful
9.8.E2 Bi ( x ) = M ( x ) cos θ ( x ) Airy-Bi 𝑥 modulus-Airy-M 𝑥 phase-Airy-Theta 𝑥 {\displaystyle{\displaystyle\mathrm{Bi}\left(x\right)=M\left(x\right)\cos% \theta\left(x\right)}} AiryBi(x)= sqrt(AiryAi(x)^2+AiryBi(x)^2)*cos(arctan(AiryAi(x)/AiryBi(x))) AiryBi[x]= Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Cos[ArcTan[Divide[AiryAi[x], AiryBi[x]]]] Failure Failure Successful Successful
9.8.E3 M ( x ) = Ai 2 ( x ) + Bi 2 ( x ) modulus-Airy-M 𝑥 Airy-Ai 2 𝑥 Airy-Bi 2 𝑥 {\displaystyle{\displaystyle M\left(x\right)=\sqrt{{\mathrm{Ai}^{2}}\left(x% \right)+{\mathrm{Bi}^{2}}\left(x\right)}}} sqrt(AiryAi(x)^2+AiryBi(x)^2)=sqrt((AiryAi(x))^(2)+ (AiryBi(x))^(2)) Sqrt[AiryAi[x]^2 + AiryBi[x]^2]=Sqrt[(AiryAi[x])^(2)+ (AiryBi[x])^(2)] Successful Successful - -
9.8.E4 θ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) phase-Airy-Theta 𝑥 Airy-Ai 𝑥 Airy-Bi 𝑥 {\displaystyle{\displaystyle\theta\left(x\right)=\operatorname{arctan}\left(% \mathrm{Ai}\left(x\right)/\mathrm{Bi}\left(x\right)\right)}} arctan(AiryAi(x)/AiryBi(x))= arctan(AiryAi(x)/ AiryBi(x)) ArcTan[Divide[AiryAi[x], AiryBi[x]]]= ArcTan[AiryAi[x]/ AiryBi[x]] Successful Successful - -
9.8.E5 Ai ( x ) = N ( x ) sin ϕ ( x ) diffop Airy-Ai 1 𝑥 modulus-Airy-N 𝑥 phase-Airy-Phi 𝑥 {\displaystyle{\displaystyle\mathrm{Ai}'\left(x\right)=N\left(x\right)\sin\phi% \left(x\right)}} subs( temp=x, diff( AiryAi(temp), temp$(1) ) )= sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(1, x)/AiryBi(1, x))) (D[AiryAi[temp], {temp, 1}]/.temp-> x)= Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]] Failure Failure Successful Successful
9.8.E6 Bi ( x ) = N ( x ) cos ϕ ( x ) diffop Airy-Bi 1 𝑥 modulus-Airy-N 𝑥 phase-Airy-Phi 𝑥 {\displaystyle{\displaystyle\mathrm{Bi}'\left(x\right)=N\left(x\right)\cos\phi% \left(x\right)}} subs( temp=x, diff( AiryBi(temp), temp$(1) ) )= sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*cos(arctan(AiryAi(1, x)/AiryBi(1, x))) (D[AiryBi[temp], {temp, 1}]/.temp-> x)= Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Cos[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]] Failure Failure Successful Successful
9.8.E7 N ( x ) = Ai 2 ( x ) + Bi 2 ( x ) modulus-Airy-N 𝑥 diffop Airy-Ai 1 2 𝑥 diffop Airy-Bi 1 2 𝑥 {\displaystyle{\displaystyle N\left(x\right)=\sqrt{{\mathrm{Ai}'^{2}}\left(x% \right)+{\mathrm{Bi}'^{2}}\left(x\right)}}} sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)=sqrt((subs( temp=x, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=x, diff( AiryBi(temp), temp$(1) ) ))^(2)) Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]=Sqrt[((D[AiryAi[temp], {temp, 1}]/.temp-> x))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> x))^(2)] Successful Successful - -
9.8.E8 ϕ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) phase-Airy-Phi 𝑥 diffop Airy-Ai 1 𝑥 diffop Airy-Bi 1 𝑥 {\displaystyle{\displaystyle\phi\left(x\right)=\operatorname{arctan}\left(% \mathrm{Ai}'\left(x\right)/\mathrm{Bi}'\left(x\right)\right)}} arctan(AiryAi(1, x)/AiryBi(1, x))= arctan(subs( temp=x, diff( AiryAi(temp), temp$(1) ) )/ subs( temp=x, diff( AiryBi(temp), temp$(1) ) )) ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]= ArcTan[(D[AiryAi[temp], {temp, 1}]/.temp-> x)/ (D[AiryBi[temp], {temp, 1}]/.temp-> x)] Successful Successful - -
9.8.E9 | x | 1 / 2 M 2 ( x ) = 1 2 ξ ( J 1 / 3 2 ( ξ ) + Y 1 / 3 2 ( ξ ) ) superscript 𝑥 1 2 modulus-Airy-M 2 𝑥 1 2 𝜉 Bessel-J 1 3 2 𝜉 Bessel-Y-Weber 1 3 2 𝜉 {\displaystyle{\displaystyle|x|^{1/2}{M^{2}}\left(x\right)=\tfrac{1}{2}\xi% \left({J_{1/3}^{2}}\left(\xi\right)+{Y_{1/3}^{2}}\left(\xi\right)\right)}} (abs(x))^(1/ 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)=(1)/(2)*xi*((BesselJ(1/ 3, xi))^(2)+ (BesselY(1/ 3, xi))^(2)) (Abs[x])^(1/ 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[1/ 3, \[Xi]])^(2)+ (BesselY[1/ 3, \[Xi]])^(2)) Failure Failure
Fail
1.159089025-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
15.06764807-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
340.9777186-.4715106810e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
1.159089025+.4715106810e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.1590890245070966, -0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[15.06764807713232, -0.004715107328741586] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[340.9777188366776, -0.004715107328741586] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.1590890245070966, 0.004715107328741586] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
9.8.E10 | x | - 1 / 2 N 2 ( x ) = 1 2 ξ ( J 2 / 3 2 ( ξ ) + Y 2 / 3 2 ( ξ ) ) superscript 𝑥 1 2 modulus-Airy-N 2 𝑥 1 2 𝜉 Bessel-J 2 3 2 𝜉 Bessel-Y-Weber 2 3 2 𝜉 {\displaystyle{\displaystyle|x|^{-1/2}{N^{2}}\left(x\right)=\tfrac{1}{2}\xi% \left({J_{2/3}^{2}}\left(\xi\right)+{Y_{2/3}^{2}}\left(\xi\right)\right)}} (abs(x))^(- 1/ 2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)=(1)/(2)*xi*((BesselJ(2/ 3, xi))^(2)+ (BesselY(2/ 3, xi))^(2)) (Abs[x])^(- 1/ 2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)=Divide[1,2]*\[Xi]*((BesselJ[2/ 3, \[Xi]])^(2)+ (BesselY[2/ 3, \[Xi]])^(2)) Failure Failure
Fail
.5749530917+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
11.57260149+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
303.0362324+.6794393049e-2*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
.5749530917-.6794393049e-2*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[0.5749530907924223, 0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[11.572601490351364, 0.0067943920267909685] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[303.0362323510325, 0.0067943920267909685] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5749530907924223, -0.0067943920267909685] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
9.8.E11 θ ( x ) = 2 3 π + arctan ( Y 1 / 3 ( ξ ) / J 1 / 3 ( ξ ) ) phase-Airy-Theta 𝑥 2 3 𝜋 Bessel-Y-Weber 1 3 𝜉 Bessel-J 1 3 𝜉 {\displaystyle{\displaystyle\theta\left(x\right)=\tfrac{2}{3}\pi+\operatorname% {arctan}\left(Y_{1/3}\left(\xi\right)/J_{1/3}\left(\xi\right)\right)}} arctan(AiryAi(x)/AiryBi(x))=(2)/(3)*Pi + arctan(BesselY(1/ 3, xi)/ BesselJ(1/ 3, xi)) ArcTan[Divide[AiryAi[x], AiryBi[x]]]=Divide[2,3]*Pi + ArcTan[BesselY[1/ 3, \[Xi]]/ BesselJ[1/ 3, \[Xi]]] Failure Failure
Fail
-2.062235934-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
-2.163232204-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
-2.173351447-1.435552558*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
-2.062235934+1.435552558*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-2.062235934109286, -1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.163232204380712, -1.435552557338311] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.17335144762396, -1.435552557338311] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.062235934109286, 1.435552557338311] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
9.8.E12 ϕ ( x ) = 1 3 π + arctan ( Y 2 / 3 ( ξ ) / J 2 / 3 ( ξ ) ) phase-Airy-Phi 𝑥 1 3 𝜋 Bessel-Y-Weber 2 3 𝜉 Bessel-J 2 3 𝜉 {\displaystyle{\displaystyle\phi\left(x\right)=\tfrac{1}{3}\pi+\operatorname{% arctan}\left(Y_{2/3}\left(\xi\right)/J_{2/3}\left(\xi\right)\right)}} arctan(AiryAi(1, x)/AiryBi(1, x))=(1)/(3)*Pi + arctan(BesselY(2/ 3, xi)/ BesselJ(2/ 3, xi)) ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]=Divide[1,3]*Pi + ArcTan[BesselY[2/ 3, \[Xi]]/ BesselJ[2/ 3, \[Xi]]] Failure Failure
Fail
-.8340487847-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
-.6779445534-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
-.6655182693-1.384157839*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
-.8340487847+1.384157839*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-0.8340487867218234, -1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.6779445554392751, -1.3841578383770126] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.6655182713247128, -1.3841578383770126] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.8340487867218234, 1.3841578383770126] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
9.8.E13 M ( x ) N ( x ) sin ( θ ( x ) - ϕ ( x ) ) = π - 1 modulus-Airy-M 𝑥 modulus-Airy-N 𝑥 phase-Airy-Theta 𝑥 phase-Airy-Phi 𝑥 superscript 𝜋 1 {\displaystyle{\displaystyle M\left(x\right)N\left(x\right)\sin\left(\theta% \left(x\right)-\phi\left(x\right)\right)=\pi^{-1}}} sqrt(AiryAi(x)^2+AiryBi(x)^2)*sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x)))= (Pi)^(- 1) Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]= (Pi)^(- 1) Failure Failure Successful Successful
9.8#Ex1 M 2 ( x ) θ ( x ) = - π - 1 modulus-Airy-M 2 𝑥 diffop phase-Airy-Theta 1 𝑥 superscript 𝜋 1 {\displaystyle{\displaystyle{M^{2}}\left(x\right)\theta'\left(x\right)=-\pi^{-% 1}}} (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) )= - (Pi)^(- 1) (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x)= - (Pi)^(- 1) Failure Successful Successful -
9.8#Ex2 N 2 ( x ) ϕ ( x ) = π - 1 x modulus-Airy-N 2 𝑥 diffop phase-Airy-Phi 1 𝑥 superscript 𝜋 1 𝑥 {\displaystyle{\displaystyle{N^{2}}\left(x\right)\phi'\left(x\right)=\pi^{-1}x}} (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* subs( temp=x, diff( arctan(AiryAi(1, temp)/AiryBi(1, temp)), temp$(1) ) )= (Pi)^(- 1)* x (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* (D[ArcTan[Divide[AiryAiPrime[temp], AiryBiPrime[temp]]], {temp, 1}]/.temp-> x)= (Pi)^(- 1)* x Failure Successful Successful -
9.8#Ex3 N ( x ) N ( x ) = x M ( x ) M ( x ) modulus-Airy-N 𝑥 diffop modulus-Airy-N 1 𝑥 𝑥 modulus-Airy-M 𝑥 diffop modulus-Airy-M 1 𝑥 {\displaystyle{\displaystyle N\left(x\right)N'\left(x\right)=xM\left(x\right)M% '\left(x\right)}} sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*subs( temp=x, diff( sqrt(AiryAi(1, temp)^2+AiryBi(1, temp)^2), temp$(1) ) )= x*sqrt(AiryAi(x)^2+AiryBi(x)^2)*subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ) Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*(D[Sqrt[AiryAiPrime[temp]^2 + AiryBiPrime[temp]^2], {temp, 1}]/.temp-> x)= x*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*(D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x) Successful Successful - -
9.8.E15 N 2 ( x ) = M 2 ( x ) + M 2 ( x ) θ 2 ( x ) modulus-Airy-N 2 𝑥 diffop modulus-Airy-M 1 2 𝑥 modulus-Airy-M 2 𝑥 diffop phase-Airy-Theta 1 2 𝑥 {\displaystyle{\displaystyle{N^{2}}\left(x\right)={M'^{2}}\left(x\right)+{M^{2% }}\left(x\right){\theta'^{2}}\left(x\right)}} (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)= (subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))^(2)+ (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* (subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2) (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)= ((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x))^(2)+ (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* ((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))^(2) Successful Successful - -
9.8.E15 M 2 ( x ) + M 2 ( x ) θ 2 ( x ) = M 2 ( x ) + π - 2 M - 2 ( x ) diffop modulus-Airy-M 1 2 𝑥 modulus-Airy-M 2 𝑥 diffop phase-Airy-Theta 1 2 𝑥 diffop modulus-Airy-M 1 2 𝑥 superscript 𝜋 2 modulus-Airy-M 2 𝑥 {\displaystyle{\displaystyle{M'^{2}}\left(x\right)+{M^{2}}\left(x\right){% \theta'^{2}}\left(x\right)={M'^{2}}(x)+\pi^{-2}{M^{-2}}\left(x\right)}} (subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))^(2)+ (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* (subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)= (subs( temp=(x), diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))^(2)+ (Pi)^(- 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(- 2) ((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x))^(2)+ (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* ((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))^(2)= ((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> (x)))^(2)+ (Pi)^(- 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(- 2) Failure Successful Successful -
9.8.E16 x 2 M 2 ( x ) = N 2 ( x ) + N 2 ( x ) ϕ 2 ( x ) superscript 𝑥 2 modulus-Airy-M 2 𝑥 diffop modulus-Airy-N 1 2 𝑥 modulus-Airy-N 2 𝑥 diffop phase-Airy-Phi 1 2 𝑥 {\displaystyle{\displaystyle x^{2}{M^{2}}\left(x\right)={N'^{2}}\left(x\right)% +{N^{2}}\left(x\right){\phi'^{2}}\left(x\right)}} (x)^(2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)= (subs( temp=x, diff( sqrt(AiryAi(1, temp)^2+AiryBi(1, temp)^2), temp$(1) ) ))^(2)+ (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* (subs( temp=x, diff( arctan(AiryAi(1, temp)/AiryBi(1, temp)), temp$(1) ) ))^(2) (x)^(2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)= ((D[Sqrt[AiryAiPrime[temp]^2 + AiryBiPrime[temp]^2], {temp, 1}]/.temp-> x))^(2)+ (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* ((D[ArcTan[Divide[AiryAiPrime[temp], AiryBiPrime[temp]]], {temp, 1}]/.temp-> x))^(2) Successful Successful - -
9.8.E16 N 2 ( x ) + N 2 ( x ) ϕ 2 ( x ) = N 2 ( x ) + π - 2 x 2 N - 2 ( x ) diffop modulus-Airy-N 1 2 𝑥 modulus-Airy-N 2 𝑥 diffop phase-Airy-Phi 1 2 𝑥 diffop modulus-Airy-N 1 2 𝑥 superscript 𝜋 2 superscript 𝑥 2 modulus-Airy-N 2 𝑥 {\displaystyle{\displaystyle{N'^{2}}\left(x\right)+{N^{2}}\left(x\right){\phi'% ^{2}}\left(x\right)={N'^{2}}\left(x\right)+\pi^{-2}x^{2}{N^{-2}}\left(x\right)}} (subs( temp=x, diff( sqrt(AiryAi(1, temp)^2+AiryBi(1, temp)^2), temp$(1) ) ))^(2)+ (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* (subs( temp=x, diff( arctan(AiryAi(1, temp)/AiryBi(1, temp)), temp$(1) ) ))^(2)= (subs( temp=x, diff( sqrt(AiryAi(1, temp)^2+AiryBi(1, temp)^2), temp$(1) ) ))^(2)+ (Pi)^(- 2)* (x)^(2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(- 2) ((D[Sqrt[AiryAiPrime[temp]^2 + AiryBiPrime[temp]^2], {temp, 1}]/.temp-> x))^(2)+ (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* ((D[ArcTan[Divide[AiryAiPrime[temp], AiryBiPrime[temp]]], {temp, 1}]/.temp-> x))^(2)= ((D[Sqrt[AiryAiPrime[temp]^2 + AiryBiPrime[temp]^2], {temp, 1}]/.temp-> x))^(2)+ (Pi)^(- 2)* (x)^(2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(- 2) Failure Successful Successful -
9.8.E17 tan ( θ ( x ) - ϕ ( x ) ) = 1 / ( π M ( x ) M ( x ) ) phase-Airy-Theta 𝑥 phase-Airy-Phi 𝑥 1 𝜋 modulus-Airy-M 𝑥 diffop modulus-Airy-M 1 𝑥 {\displaystyle{\displaystyle\tan\left(\theta\left(x\right)-\phi\left(x\right)% \right)=1/(\pi M\left(x\right)M'\left(x\right))}} tan(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x)))= 1/(Pi*sqrt(AiryAi(x)^2+AiryBi(x)^2)*subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) )) Tan[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]= 1/(Pi*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*(D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x)) Failure Successful Successful -
9.8.E17 1 / ( π M ( x ) M ( x ) ) = - M ( x ) θ ( x ) / M ( x ) 1 𝜋 modulus-Airy-M 𝑥 diffop modulus-Airy-M 1 𝑥 modulus-Airy-M 𝑥 diffop phase-Airy-Theta 1 𝑥 diffop modulus-Airy-M 1 𝑥 {\displaystyle{\displaystyle 1/(\pi M\left(x\right)M'\left(x\right))=-M\left(x% \right)\theta'\left(x\right)/M'\left(x\right)}} 1/(Pi*sqrt(AiryAi(x)^2+AiryBi(x)^2)*subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))= - sqrt(AiryAi(x)^2+AiryBi(x)^2)*subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) )/ subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ) 1/(Pi*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*(D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x))= - Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*(D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x)/ (D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x) Failure Successful Successful -
9.8#Ex4 M ′′ ( x ) = x M ( x ) + π - 2 M - 3 ( x ) diffop modulus-Airy-M 2 𝑥 𝑥 modulus-Airy-M 𝑥 superscript 𝜋 2 modulus-Airy-M 3 𝑥 {\displaystyle{\displaystyle M''\left(x\right)=xM\left(x\right)+\pi^{-2}{M^{-3% }}\left(x\right)}} subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(2) ) )= x*sqrt(AiryAi(x)^2+AiryBi(x)^2)+ (Pi)^(- 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(- 3) (D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 2}]/.temp-> x)= x*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]+ (Pi)^(- 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(- 3) Failure Successful Successful -
9.8#Ex5 M 2 ′′′ ( x ) - 4 x M 2 ( x ) - 2 M 2 ( x ) = 0 diffop modulus-Airy-M 2 3 𝑥 4 𝑥 diffop modulus-Airy-M 2 1 𝑥 2 modulus-Airy-M 2 𝑥 0 {\displaystyle{\displaystyle{M^{2}}'''\left(x\right)-4x{M^{2}}'\left(x\right)-% 2{M^{2}}\left(x\right)=0}} (subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(3) ) ))^(2)- 4*x*(subs( temp=x, diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))^(2)- 2*(sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)= 0 ((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 3}]/.temp-> x))^(2)- 4*x*((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> x))^(2)- 2*(Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)= 0 Failure Failure
Fail
-2.268412261 <- {x = 1}
-24.26674995 <- {x = 2}
157.2405245 <- {x = 3}
Fail
-2.2684122541643257 <- {Rule[x, 1]}
-24.266750191340662 <- {Rule[x, 2]}
157.2404952502784 <- {Rule[x, 3]}
9.8.E19 θ 2 ( x ) + 1 2 ( θ ′′′ ( x ) / θ ( x ) ) - 3 4 ( θ ′′ ( x ) / θ ( x ) ) 2 = - x diffop phase-Airy-Theta 1 2 𝑥 1 2 diffop phase-Airy-Theta 3 𝑥 diffop phase-Airy-Theta 1 𝑥 3 4 superscript diffop phase-Airy-Theta 2 𝑥 diffop phase-Airy-Theta 1 𝑥 2 𝑥 {\displaystyle{\displaystyle{\theta'^{2}}\left(x\right)+\tfrac{1}{2}(\theta'''% \left(x\right)/\theta'\left(x\right))-\tfrac{3}{4}(\theta''\left(x\right)/% \theta'\left(x\right))^{2}=-x}} (subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)+(1)/(2)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(3) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))-(3)/(4)*(subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(2) ) )/ subs( temp=x, diff( arctan(AiryAi(temp)/AiryBi(temp)), temp$(1) ) ))^(2)= - x ((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))^(2)+Divide[1,2]*((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 3}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x))-Divide[3,4]*(((D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 2}]/.temp-> x)/ (D[ArcTan[Divide[AiryAi[temp], AiryBi[temp]]], {temp, 1}]/.temp-> x)))^(2)= - x Successful Successful - -
9.10.E1 z Ai ( t ) d t = π ( Ai ( z ) Gi ( z ) - Ai ( z ) Gi ( z ) ) superscript subscript 𝑧 Airy-Ai 𝑡 𝑡 𝜋 Airy-Ai 𝑧 diffop Scorer-Gi 1 𝑧 diffop Airy-Ai 1 𝑧 Scorer-Gi 𝑧 {\displaystyle{\displaystyle\int_{z}^{\infty}\mathrm{Ai}\left(t\right)\mathrm{% d}t=\pi\left(\mathrm{Ai}\left(z\right)\mathrm{Gi}'\left(z\right)-\mathrm{Ai}'% \left(z\right)\mathrm{Gi}\left(z\right)\right)}} int(AiryAi(t), t = z..infinity)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))) Integrate[AiryAi[t], {t, z, Infinity}]= Pi*(AiryAi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z]) Failure Failure Skip Successful
9.10.E2 - z Ai ( t ) d t = π ( Ai ( z ) Hi ( z ) - Ai ( z ) Hi ( z ) ) superscript subscript 𝑧 Airy-Ai 𝑡 𝑡 𝜋 Airy-Ai 𝑧 diffop Scorer-Hi 1 𝑧 diffop Airy-Ai 1 𝑧 Scorer-Hi 𝑧 {\displaystyle{\displaystyle\int_{-\infty}^{z}\mathrm{Ai}\left(t\right)\mathrm% {d}t=\pi\left(\mathrm{Ai}\left(z\right)\mathrm{Hi}'\left(z\right)-\mathrm{Ai}'% \left(z\right)\mathrm{Hi}\left(z\right)\right)}} int(AiryAi(t), t = - infinity..z)= Pi*(AiryAi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryAi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))) Integrate[AiryAi[t], {t, - Infinity, z}]= Pi*(AiryAi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryAi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z]) Failure Failure Skip Successful
9.10.E3 - z Bi ( t ) d t = 0 z Bi ( t ) d t superscript subscript 𝑧 Airy-Bi 𝑡 𝑡 superscript subscript 0 𝑧 Airy-Bi 𝑡 𝑡 {\displaystyle{\displaystyle\int_{-\infty}^{z}\mathrm{Bi}\left(t\right)\mathrm% {d}t=\int_{0}^{z}\mathrm{Bi}\left(t\right)\mathrm{d}t}} int(AiryBi(t), t = - infinity..z)= int(AiryBi(t), t = 0..z) Integrate[AiryBi[t], {t, - Infinity, z}]= Integrate[AiryBi[t], {t, 0, z}] Successful Failure - Successful
9.10.E3 π ( Bi ( z ) Gi ( z ) - Bi ( z ) Gi ( z ) ) = π ( Bi ( z ) Hi ( z ) - Bi ( z ) Hi ( z ) ) 𝜋 diffop Airy-Bi 1 𝑧 Scorer-Gi 𝑧 Airy-Bi 𝑧 diffop Scorer-Gi 1 𝑧 𝜋 Airy-Bi 𝑧 diffop Scorer-Hi 1 𝑧 diffop Airy-Bi 1 𝑧 Scorer-Hi 𝑧 {\displaystyle{\displaystyle\pi\left(\mathrm{Bi}'\left(z\right)\mathrm{Gi}% \left(z\right)-\mathrm{Bi}\left(z\right)\mathrm{Gi}'\left(z\right)\right)\\ =\pi\left(\mathrm{Bi}\left(z\right)\mathrm{Hi}'\left(z\right)-\mathrm{Bi}'% \left(z\right)\mathrm{Hi}\left(z\right)\right)}} Pi*(subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) ))= Pi*(AiryBi(z)*subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )- subs( temp=z, diff( AiryBi(temp), temp$(1) ) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))) Pi*((D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerGi[z]- AiryBi[z]*(D[ScorerGi[temp], {temp, 1}]/.temp-> z))= Pi*(AiryBi[z]*(D[ScorerHi[temp], {temp, 1}]/.temp-> z)- (D[AiryBi[temp], {temp, 1}]/.temp-> z)*ScorerHi[z]) Error Error - -
9.10#Ex1 0 Ai ( t ) d t = 1 3 superscript subscript 0 Airy-Ai 𝑡 𝑡 1 3 {\displaystyle{\displaystyle\int_{0}^{\infty}\mathrm{Ai}\left(t\right)\mathrm{% d}t=\tfrac{1}{3}}} int(AiryAi(t), t = 0..infinity)=(1)/(3) Integrate[AiryAi[t], {t, 0, Infinity}]=Divide[1,3] Successful Successful - -
9.10#Ex2 - 0 Ai ( t ) d t = 2 3 superscript subscript 0 Airy-Ai 𝑡 𝑡 2 3 {\displaystyle{\displaystyle\int_{-\infty}^{0}\mathrm{Ai}\left(t\right)\mathrm% {d}t=\tfrac{2}{3}}} int(AiryAi(t), t = - infinity..0)=(2)/(3) Integrate[AiryAi[t], {t, - Infinity, 0}]=Divide[2,3] Successful Failure - Successful
9.10.E12 - 0 Bi ( t ) d t = 0 superscript subscript 0 Airy-Bi 𝑡 𝑡 0 {\displaystyle{\displaystyle\int_{-\infty}^{0}\mathrm{Bi}\left(t\right)\mathrm% {d}t=0}} int(AiryBi(t), t = - infinity..0)= 0 Integrate[AiryBi[t], {t, - Infinity, 0}]= 0 Successful Failure - Successful
9.10.E13 - e p t Ai ( t ) d t = e p 3 / 3 superscript subscript superscript 𝑒 𝑝 𝑡 Airy-Ai 𝑡 𝑡 superscript 𝑒 superscript 𝑝 3 3 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{pt}\mathrm{Ai}\left(t% \right)\mathrm{d}t=e^{p^{3}/3}}} int(exp(p*t)*AiryAi(t), t = - infinity..infinity)= exp((p)^(3)/ 3) Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}]= Exp[(p)^(3)/ 3] Failure Failure Skip Error
9.10.E14 0 e - p t Ai ( t ) d t = e - p 3 / 3 ( 1 3 - p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) superscript subscript 0 superscript 𝑒 𝑝 𝑡 Airy-Ai 𝑡 𝑡 superscript 𝑒 superscript 𝑝 3 3 1 3 𝑝 Kummer-confluent-hypergeometric-M-as-1F1 1 3 4 3 1 3 superscript 𝑝 3 superscript 3 4 3 Euler-Gamma 4 3 superscript 𝑝 2 Kummer-confluent-hypergeometric-M-as-1F1 2 3 5 3 1 3 superscript 𝑝 3 superscript 3 5 3 Euler-Gamma 5 3 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-pt}\mathrm{Ai}\left(t\right)% \mathrm{d}t=e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p{{}_{1}F_{1}}\left(\tfrac{1}{% 3};\tfrac{4}{3};\tfrac{1}{3}p^{3}\right)}{3^{4/3}\Gamma\left(\tfrac{4}{3}% \right)}+\frac{p^{2}{{}_{1}F_{1}}\left(\tfrac{2}{3};\tfrac{5}{3};\tfrac{1}{3}p% ^{3}\right)}{3^{5/3}\Gamma\left(\tfrac{5}{3}\right)}\right)}} int(exp(- p*t)*AiryAi(t), t = 0..infinity)= exp(- (p)^(3)/ 3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/ 3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/ 3)* GAMMA((5)/(3)))) Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}]= Exp[- (p)^(3)/ 3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/ 3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/ 3)* Gamma[Divide[5,3]]]) Successful Failure - Successful
9.10.E15 0 e - p t Ai ( - t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) superscript subscript 0 superscript 𝑒 𝑝 𝑡 Airy-Ai 𝑡 𝑡 1 3 superscript 𝑒 superscript 𝑝 3 3 incomplete-Gamma 1 3 1 3 superscript 𝑝 3 Euler-Gamma 1 3 incomplete-Gamma 2 3 1 3 superscript 𝑝 3 Euler-Gamma 2 3 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-pt}\mathrm{Ai}\left(-t\right)% \mathrm{d}t={\frac{1}{3}e^{p^{3}/3}\left(\frac{\Gamma\left(\tfrac{1}{3},\tfrac% {1}{3}p^{3}\right)}{\Gamma\left(\tfrac{1}{3}\right)}+\frac{\Gamma\left(\tfrac{% 2}{3},\tfrac{1}{3}p^{3}\right)}{\Gamma\left(\tfrac{2}{3}\right)}\right)}}} int(exp(- p*t)*AiryAi(- t), t = 0..infinity)=(1)/(3)*exp((p)^(3)/ 3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))) Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}]=Divide[1,3]*Exp[(p)^(3)/ 3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]) Failure Failure Skip Error
9.10.E16 0 e - p t Bi ( - t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) - Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) superscript subscript 0 superscript 𝑒 𝑝 𝑡 Airy-Bi 𝑡 𝑡 1 3 superscript 𝑒 superscript 𝑝 3 3 incomplete-Gamma 2 3 1 3 superscript 𝑝 3 Euler-Gamma 2 3 incomplete-Gamma 1 3 1 3 superscript 𝑝 3 Euler-Gamma 1 3 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-pt}\mathrm{Bi}\left(-t\right)% \mathrm{d}t={\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\Gamma\left(\tfrac{2}{3}% ,\tfrac{1}{3}p^{3}\right)}{\Gamma\left(\tfrac{2}{3}\right)}-\frac{\Gamma\left(% \tfrac{1}{3},\tfrac{1}{3}p^{3}\right)}{\Gamma\left(\tfrac{1}{3}\right)}\right)% }}} int(exp(- p*t)*AiryBi(- t), t = 0..infinity)=(1)/(sqrt(3))*exp((p)^(3)/ 3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))) Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}]=Divide[1,Sqrt[3]]*Exp[(p)^(3)/ 3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]) Failure Failure Skip Error
9.10.E18 Ai ( z ) = 3 z 5 / 4 e - ( 2 / 3 ) z 3 / 2 4 π 0 t - 3 / 4 e - ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t Airy-Ai 𝑧 3 superscript 𝑧 5 4 superscript 𝑒 2 3 superscript 𝑧 3 2 4 𝜋 superscript subscript 0 superscript 𝑡 3 4 superscript 𝑒 2 3 superscript 𝑡 3 2 Airy-Ai 𝑡 superscript 𝑧 3 2 superscript 𝑡 3 2 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{3z^{5/4}e^{-(2/3)z% ^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\mathrm{Ai}% \left(t\right)}{z^{3/2}+t^{3/2}}\mathrm{d}t}} AiryAi(z)=(3*(z)^(5/ 4)* exp(-(2/ 3)* (z)^(3/ 2)))/(4*Pi)* int(((t)^(- 3/ 4)* exp(-(2/ 3)* (t)^(3/ 2))*AiryAi(t))/((z)^(3/ 2)+ (t)^(3/ 2)), t = 0..infinity) AiryAi[z]=Divide[3*(z)^(5/ 4)* Exp[-(2/ 3)* (z)^(3/ 2)],4*Pi]* Integrate[Divide[(t)^(- 3/ 4)* Exp[-(2/ 3)* (t)^(3/ 2)]*AiryAi[t],(z)^(3/ 2)+ (t)^(3/ 2)], {t, 0, Infinity}] Error Failure - Error
9.10#Ex3 Ai ( z ) = z 5 / 4 e - ( 2 / 3 ) z 3 / 2 2 7 / 2 π 0 t - 1 / 2 e - ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t Airy-Ai 𝑧 superscript 𝑧 5 4 superscript 𝑒 2 3 superscript 𝑧 3 2 superscript 2 7 2 𝜋 superscript subscript 0 superscript 𝑡 1 2 superscript 𝑒 2 3 superscript 𝑡 3 2 Airy-Ai 𝑡 superscript 𝑧 3 2 superscript 𝑡 3 2 𝑡 {\displaystyle{\displaystyle\mathrm{Ai}\left(z\right)=\frac{z^{5/4}e^{-(2/3)z^% {3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\mathrm{% Ai}\left(t\right)}{z^{3/2}+t^{3/2}}\mathrm{d}t}} AiryAi(z)=((z)^(5/ 4)* exp(-(2/ 3)* (z)^(3/ 2)))/((2)^(7/ 2)* Pi)* int(((t)^(- 1/ 2)* exp(-(2/ 3)* (t)^(3/ 2))*AiryAi(t))/((z)^(3/ 2)+ (t)^(3/ 2)), t = 0..infinity) AiryAi[z]=Divide[(z)^(5/ 4)* Exp[-(2/ 3)* (z)^(3/ 2)],(2)^(7/ 2)* Pi]* Integrate[Divide[(t)^(- 1/ 2)* Exp[-(2/ 3)* (t)^(3/ 2)]*AiryAi[t],(z)^(3/ 2)+ (t)^(3/ 2)], {t, 0, Infinity}] Failure Failure Skip Error
9.10.E20 0 x 0 v Ai ( t ) d t d v = x 0 x Ai ( t ) d t - Ai ( x ) + Ai ( 0 ) superscript subscript 0 𝑥 superscript subscript 0 𝑣 Airy-Ai 𝑡 𝑡 𝑣 𝑥 superscript subscript 0 𝑥 Airy-Ai 𝑡 𝑡 diffop Airy-Ai 1 𝑥 diffop Airy-Ai 1 0 {\displaystyle{\displaystyle\int_{0}^{x}\!\!\int_{0}^{v}\mathrm{Ai}\left(t% \right)\mathrm{d}t\mathrm{d}v=x\int_{0}^{x}\mathrm{Ai}\left(t\right)\mathrm{d}% t-\mathrm{Ai}'\left(x\right)+\mathrm{Ai}'\left(0\right)}} int(int(AiryAi(t), t = 0..v), v = 0..x)= x*int(AiryAi(t), t = 0..x)- subs( temp=x, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) ) Integrate[Integrate[AiryAi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryAi[t], {t, 0, x}]- (D[AiryAi[temp], {temp, 1}]/.temp-> x)+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0) Failure Failure Skip Successful
9.10.E21 0 x 0 v Bi ( t ) d t d v = x 0 x Bi ( t ) d t - Bi ( x ) + Bi ( 0 ) superscript subscript 0 𝑥 superscript subscript 0 𝑣 Airy-Bi 𝑡 𝑡 𝑣 𝑥 superscript subscript 0 𝑥 Airy-Bi 𝑡 𝑡 diffop Airy-Bi 1 𝑥 diffop Airy-Bi 1 0 {\displaystyle{\displaystyle\int_{0}^{x}\!\!\int_{0}^{v}\mathrm{Bi}\left(t% \right)\mathrm{d}t\mathrm{d}v=x\int_{0}^{x}\mathrm{Bi}\left(t\right)\mathrm{d}% t-\mathrm{Bi}'\left(x\right)+\mathrm{Bi}'\left(0\right)}} int(int(AiryBi(t), t = 0..v), v = 0..x)= x*int(AiryBi(t), t = 0..x)- subs( temp=x, diff( AiryBi(temp), temp$(1) ) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) ) Integrate[Integrate[AiryBi[t], {t, 0, v}], {v, 0, x}]= x*Integrate[AiryBi[t], {t, 0, x}]- (D[AiryBi[temp], {temp, 1}]/.temp-> x)+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0) Failure Failure Skip Successful
9.11.E1 d 3 w d z 3 - 4 z d w d z - 2 w = 0 derivative 𝑤 𝑧 3 4 𝑧 derivative 𝑤 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{3}w}{{\mathrm{d}z}^{3}}-4z% \frac{\mathrm{d}w}{\mathrm{d}z}-2w=0}} diff(w, [z$(3)])- 4*z*diff(w, z)- 2*w = 0 D[w, {z, 3}]- 4*z*D[w, z]- 2*w = 0 Failure Failure Skip Error
9.11.E2 𝒲 { Ai 2 ( z ) , Ai ( z ) Bi ( z ) , Bi 2 ( z ) } = 2 π - 3 Wronskian Airy-Ai 2 𝑧 Airy-Ai 𝑧 Airy-Bi 𝑧 Airy-Bi 2 𝑧 2 superscript 𝜋 3 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathrm{Ai}^{2}}\left(z\right),% \mathrm{Ai}\left(z\right)\mathrm{Bi}\left(z\right),{\mathrm{Bi}^{2}}\left(z% \right)\right\}=2\pi^{-3}}} ((AiryAi(z))^(2))*diff(AiryAi(z)*AiryBi(z)*(AiryBi(z))^(2), z)-diff((AiryAi(z))^(2), z)*(AiryAi(z)*AiryBi(z)*(AiryBi(z))^(2))= 2*(Pi)^(- 3) Wronskian[{(AiryAi[z])^(2), AiryAi[z]*AiryBi[z]*(AiryBi[z])^(2)}, z]= 2*(Pi)^(- 3) Failure Failure
Fail
-.6004096260e-1-.6097999473e-2*I <- {z = 2^(1/2)+I*2^(1/2)}
-.6004096260e-1+.6097999473e-2*I <- {z = 2^(1/2)-I*2^(1/2)}
-21.32909363+6.905982746*I <- {z = -2^(1/2)-I*2^(1/2)}
-21.32909363-6.905982746*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.060040962617560416, -0.006097999474625239] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.060040962617560416, 0.006097999474625239] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-21.329093714189053, 6.905982810760452] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-21.329093714189053, -6.905982810760452] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.11.E3 Ai 2 ( x ) = 1 4 π 3 0 J 0 ( 1 12 t 3 + x t ) t d t Airy-Ai 2 𝑥 1 4 𝜋 3 superscript subscript 0 Bessel-J 0 1 12 superscript 𝑡 3 𝑥 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle{\mathrm{Ai}^{2}}\left(x\right)=\frac{1}{4\pi\sqrt% {3}}\int_{0}^{\infty}J_{0}\left(\tfrac{1}{12}t^{3}+xt\right)t\mathrm{d}t}} (AiryAi(x))^(2)=(1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity) (AiryAi[x])^(2)=Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}] Failure Failure Skip Skip
9.11.E4 Ai 2 ( z ) + Bi 2 ( z ) = 1 π 3 / 2 0 exp ( z t - 1 12 t 3 ) t - 1 / 2 d t Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 1 superscript 𝜋 3 2 superscript subscript 0 𝑧 𝑡 1 12 superscript 𝑡 3 superscript 𝑡 1 2 𝑡 {\displaystyle{\displaystyle{\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}% \left(z\right)=\frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp\left(zt-\tfrac{1}{12}t% ^{3}\right)t^{-1/2}\mathrm{d}t}} (AiryAi(z))^(2)+ (AiryBi(z))^(2)=(1)/((Pi)^(3/ 2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/ 2), t = 0..infinity) (AiryAi[z])^(2)+ (AiryBi[z])^(2)=Divide[1,(Pi)^(3/ 2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/ 2), {t, 0, Infinity}] Failure Failure Skip Successful
9.11.E12 d z Ai 2 ( z ) = π Bi ( z ) Ai ( z ) 𝑧 Airy-Ai 2 𝑧 𝜋 Airy-Bi 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{{\mathrm{Ai}^{2}}\left(z% \right)}=\pi\frac{\mathrm{Bi}\left(z\right)}{\mathrm{Ai}\left(z\right)}}} int((1)/((AiryAi(z))^(2)), z)= Pi*(AiryBi(z))/(AiryAi(z)) Integrate[Divide[1,(AiryAi[z])^(2)], z]= Pi*Divide[AiryBi[z],AiryAi[z]] Failure Successful Skip -
9.11.E13 d z Ai ( z ) Bi ( z ) = π ln ( Bi ( z ) Ai ( z ) ) 𝑧 Airy-Ai 𝑧 Airy-Bi 𝑧 𝜋 Airy-Bi 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{\mathrm{Ai}\left(z\right)% \mathrm{Bi}\left(z\right)}=\pi\ln\left(\frac{\mathrm{Bi}\left(z\right)}{% \mathrm{Ai}\left(z\right)}\right)}} int((1)/(AiryAi(z)*AiryBi(z)), z)= Pi*ln((AiryBi(z))/(AiryAi(z))) Integrate[Divide[1,AiryAi[z]*AiryBi[z]], z]= Pi*Log[Divide[AiryBi[z],AiryAi[z]]] Failure Failure Skip Successful
9.11.E14 Ai ( z ) Bi ( z ) ( Ai 2 ( z ) + Bi 2 ( z ) ) 2 d z = π 2 Bi 2 ( z ) Ai 2 ( z ) + Bi 2 ( z ) Airy-Ai 𝑧 Airy-Bi 𝑧 superscript Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 2 𝑧 𝜋 2 Airy-Bi 2 𝑧 Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{Ai}\left(z\right)\mathrm{Bi}% \left(z\right)}{\left({\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}\left(z% \right)\right)^{2}}\mathrm{d}z=\frac{\pi}{2}\frac{{\mathrm{Bi}^{2}}\left(z% \right)}{{\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}\left(z\right)}}} int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z)=(Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2)) Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z]=Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)] Failure Failure Skip Successful
9.11.E15 0 t α - 1 Ai 2 ( t ) d t = 2 Γ ( α ) π 1 / 2 12 ( 2 α + 5 ) / 6 Γ ( 1 3 α + 5 6 ) superscript subscript 0 superscript 𝑡 𝛼 1 Airy-Ai 2 𝑡 𝑡 2 Euler-Gamma 𝛼 superscript 𝜋 1 2 superscript 12 2 𝛼 5 6 Euler-Gamma 1 3 𝛼 5 6 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\alpha-1}{\mathrm{Ai}^{2}}% \left(t\right)\mathrm{d}t=\frac{2\Gamma\left(\alpha\right)}{\pi^{1/2}12^{(2% \alpha+5)/6}\Gamma\left(\frac{1}{3}\alpha+\frac{5}{6}\right)}}} int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity)=(2*GAMMA(alpha))/((Pi)^(1/ 2)* (12)^((2*alpha + 5)/ 6)* GAMMA((1)/(3)*alpha +(5)/(6))) Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}]=Divide[2*Gamma[\[Alpha]],(Pi)^(1/ 2)* (12)^((2*\[Alpha]+ 5)/ 6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]] Failure Failure Skip Successful
9.11.E16 - Ai 3 ( t ) d t = Γ 2 ( 1 3 ) 4 π 2 superscript subscript Airy-Ai 3 𝑡 𝑡 Euler-Gamma 2 1 3 4 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}{\mathrm{Ai}^{3}}\left(t% \right)\mathrm{d}t=\frac{{\Gamma^{2}}\left(\frac{1}{3}\right)}{4\pi^{2}}}} int((AiryAi(t))^(3), t = - infinity..infinity)=((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2)) Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}]=Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)] Failure Failure Skip Error
9.11.E17 - Ai 2 ( t ) Bi ( t ) d t = Γ 2 ( 1 3 ) 4 3 π 2 superscript subscript Airy-Ai 2 𝑡 Airy-Bi 𝑡 𝑡 Euler-Gamma 2 1 3 4 3 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}{\mathrm{Ai}^{2}}\left(t% \right)\mathrm{Bi}\left(t\right)\mathrm{d}t=\frac{{\Gamma^{2}}\left(\frac{1}{3% }\right)}{4\sqrt{3}\pi^{2}}}} int((AiryAi(t))^(2)* AiryBi(t), t = - infinity..infinity)=((GAMMA((1)/(3)))^(2))/(4*sqrt(3)*(Pi)^(2)) Integrate[(AiryAi[t])^(2)* AiryBi[t], {t, - Infinity, Infinity}]=Divide[(Gamma[Divide[1,3]])^(2),4*Sqrt[3]*(Pi)^(2)] Failure Failure Skip Error
9.11.E18 0 Ai 4 ( t ) d t = ln 3 24 π 2 superscript subscript 0 Airy-Ai 4 𝑡 𝑡 3 24 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{0}^{\infty}{\mathrm{Ai}^{4}}\left(t\right)% \mathrm{d}t=\frac{\ln 3}{24\pi^{2}}}} int((AiryAi(t))^(4), t = 0..infinity)=(ln(3))/(24*(Pi)^(2)) Integrate[(AiryAi[t])^(4), {t, 0, Infinity}]=Divide[Log[3],24*(Pi)^(2)] Failure Failure Skip
Fail
Complex[1.4095755333126005, 1.4142135623730951] <- {Rule[Integrate[Power[AiryAi[t], 4], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4095755333126005, -1.4142135623730951] <- {Rule[Integrate[Power[AiryAi[t], 4], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4188515914335897, -1.4142135623730951] <- {Rule[Integrate[Power[AiryAi[t], 4], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4188515914335897, 1.4142135623730951] <- {Rule[Integrate[Power[AiryAi[t], 4], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.11.E19 0 d t Ai 2 ( t ) + Bi 2 ( t ) = 0 t d t Ai 2 ( t ) + Bi 2 ( t ) superscript subscript 0 𝑡 Airy-Ai 2 𝑡 Airy-Bi 2 𝑡 superscript subscript 0 𝑡 𝑡 diffop Airy-Ai 1 2 𝑡 diffop Airy-Bi 1 2 𝑡 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\mathrm{d}t}{{\mathrm{Ai}^{% 2}}\left(t\right)+{\mathrm{Bi}^{2}}\left(t\right)}=\int_{0}^{\infty}\frac{t% \mathrm{d}t}{{\mathrm{Ai}'^{2}}\left(t\right)+{\mathrm{Bi}'^{2}}\left(t\right)% }}} int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity)= int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity) Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}]= Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}] Failure Failure Skip Error
9.11.E19 0 t d t Ai 2 ( t ) + Bi 2 ( t ) = π 2 6 superscript subscript 0 𝑡 𝑡 diffop Airy-Ai 1 2 𝑡 diffop Airy-Bi 1 2 𝑡 superscript 𝜋 2 6 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t\mathrm{d}t}{{\mathrm{Ai}'% ^{2}}\left(t\right)+{\mathrm{Bi}'^{2}}\left(t\right)}=\frac{\pi^{2}}{6}}} int((t)/((subs( temp=t, diff( AiryAi(temp), temp$(1) ) ))^(2)+ (subs( temp=t, diff( AiryBi(temp), temp$(1) ) ))^(2)), t = 0..infinity)=((Pi)^(2))/(6) Integrate[Divide[t,((D[AiryAi[temp], {temp, 1}]/.temp-> t))^(2)+ ((D[AiryBi[temp], {temp, 1}]/.temp-> t))^(2)], {t, 0, Infinity}]=Divide[(Pi)^(2),6] Failure Failure Skip
Fail
Complex[-0.23072050447513104, 1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.23072050447513104, -1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.0591476292213216, -1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.0591476292213216, 1.4142135623730951] <- {Rule[Integrate[Times[t, Power[Plus[Power[AiryAiPrime[t], 2], Power[AiryBiPrime[t], 2]], -1]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
9.12.E1 d 2 w d z 2 - z w = 1 π derivative 𝑤 𝑧 2 𝑧 𝑤 1 𝜋 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}-zw=% \frac{1}{\pi}}} diff(w, [z$(2)])- z*w =(1)/(Pi) D[w, {z, 2}]- z*w =Divide[1,Pi] Failure Failure
Fail
-.3183098861-3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-4.318309884-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.3183098861+3.999999998*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
3.681690112-0.*I <- {w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
9.12.E4 Gi ( z ) = Bi ( z ) z Ai ( t ) d t + Ai ( z ) 0 z Bi ( t ) d t Scorer-Gi 𝑧 Airy-Bi 𝑧 superscript subscript 𝑧 Airy-Ai 𝑡 𝑡 Airy-Ai 𝑧 superscript subscript 0 𝑧 Airy-Bi 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=\mathrm{Bi}\left(z\right% )\int_{z}^{\infty}\mathrm{Ai}\left(t\right)\mathrm{d}t+\mathrm{Ai}\left(z% \right)\int_{0}^{z}\mathrm{Bi}\left(t\right)\mathrm{d}t}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= AiryBi(z)*int(AiryAi(t), t = z..infinity)+ AiryAi(z)*int(AiryBi(t), t = 0..z) ScorerGi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, z, Infinity}]+ AiryAi[z]*Integrate[AiryBi[t], {t, 0, z}] Successful Failure - Successful
9.12.E5 Hi ( z ) = Bi ( z ) - z Ai ( t ) d t - Ai ( z ) - z Bi ( t ) d t Scorer-Hi 𝑧 Airy-Bi 𝑧 superscript subscript 𝑧 Airy-Ai 𝑡 𝑡 Airy-Ai 𝑧 superscript subscript 𝑧 Airy-Bi 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=\mathrm{Bi}\left(z\right% )\int_{-\infty}^{z}\mathrm{Ai}\left(t\right)\mathrm{d}t-\mathrm{Ai}\left(z% \right)\int_{-\infty}^{z}\mathrm{Bi}\left(t\right)\mathrm{d}t}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= AiryBi(z)*int(AiryAi(t), t = - infinity..z)- AiryAi(z)*int(AiryBi(t), t = - infinity..z) ScorerHi[z]= AiryBi[z]*Integrate[AiryAi[t], {t, - Infinity, z}]- AiryAi[z]*Integrate[AiryBi[t], {t, - Infinity, z}] Successful Failure - Skip
9.12.E6 Gi ( 0 ) = 1 2 Hi ( 0 ) Scorer-Gi 0 1 2 Scorer-Hi 0 {\displaystyle{\displaystyle\mathrm{Gi}\left(0\right)=\tfrac{1}{2}\mathrm{Hi}% \left(0\right)}} AiryBi(0)*(int(AiryAi(t), t = (0) .. infinity))+AiryAi(0)*(int(AiryBi(t), t = 0 .. (0)))=(1)/(2)*AiryBi(0)*(int(AiryAi(t), t = -infinity .. (0)))-AiryAi(0)*(int(AiryBi(t), t = -infinity .. (0))) ScorerGi[0]=Divide[1,2]*ScorerHi[0] Successful Successful - -
9.12.E6 1 2 Hi ( 0 ) = 1 3 Bi ( 0 ) 1 2 Scorer-Hi 0 1 3 Airy-Bi 0 {\displaystyle{\displaystyle\tfrac{1}{2}\mathrm{Hi}\left(0\right)=\tfrac{1}{3}% \mathrm{Bi}\left(0\right)}} (1)/(2)*AiryBi(0)*(int(AiryAi(t), t = -infinity .. (0)))-AiryAi(0)*(int(AiryBi(t), t = -infinity .. (0)))=(1)/(3)*AiryBi(0) Divide[1,2]*ScorerHi[0]=Divide[1,3]*AiryBi[0] Successful Successful - -
9.12.E7 Gi ( 0 ) = 1 2 Hi ( 0 ) diffop Scorer-Gi 1 0 1 2 diffop Scorer-Hi 1 0 {\displaystyle{\displaystyle\mathrm{Gi}'\left(0\right)=\tfrac{1}{2}\mathrm{Hi}% '\left(0\right)}} subs( temp=0, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) )=(1)/(2)*subs( temp=0, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) ) (D[ScorerGi[temp], {temp, 1}]/.temp-> 0)=Divide[1,2]*(D[ScorerHi[temp], {temp, 1}]/.temp-> 0) Successful Successful - -
9.12.E7 1 2 Hi ( 0 ) = 1 3 Bi ( 0 ) 1 2 diffop Scorer-Hi 1 0 1 3 diffop Airy-Bi 1 0 {\displaystyle{\displaystyle\tfrac{1}{2}\mathrm{Hi}'\left(0\right)=\tfrac{1}{3% }\mathrm{Bi}'\left(0\right)}} (1)/(2)*subs( temp=0, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )=(1)/(3)*subs( temp=0, diff( AiryBi(temp), temp$(1) ) ) Divide[1,2]*(D[ScorerHi[temp], {temp, 1}]/.temp-> 0)=Divide[1,3]*(D[AiryBi[temp], {temp, 1}]/.temp-> 0) Successful Successful - -
9.12.E7 1 3 Bi ( 0 ) = 1 / ( 3 5 / 6 Γ ( 1 3 ) ) 1 3 diffop Airy-Bi 1 0 1 superscript 3 5 6 Euler-Gamma 1 3 {\displaystyle{\displaystyle\tfrac{1}{3}\mathrm{Bi}'\left(0\right)=1\Big{/}% \left(3^{5/6}\Gamma\left(\tfrac{1}{3}\right)\right)}} (1)/(3)*subs( temp=0, diff( AiryBi(temp), temp$(1) ) )= 1/((3)^(5/ 6)* GAMMA((1)/(3))) Divide[1,3]*(D[AiryBi[temp], {temp, 1}]/.temp-> 0)= 1/((3)^(5/ 6)* Gamma[Divide[1,3]]) Successful Successful - -
9.12.E11 Gi ( z ) + Hi ( z ) = Bi ( z ) Scorer-Gi 𝑧 Scorer-Hi 𝑧 Airy-Bi 𝑧 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)+\mathrm{Hi}\left(z\right% )=\mathrm{Bi}\left(z\right)}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))+ AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= AiryBi(z) ScorerGi[z]+ ScorerHi[z]= AiryBi[z] Successful Successful - -
9.12.E12 Gi ( z ) = 1 2 e π i / 3 Hi ( z e - 2 π i / 3 ) + 1 2 e - π i / 3 Hi ( z e 2 π i / 3 ) Scorer-Gi 𝑧 1 2 superscript 𝑒 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 1 2 superscript 𝑒 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=\tfrac{1}{2}e^{\pi i/3}% \mathrm{Hi}\left(ze^{-2\pi i/3}\right)+\tfrac{1}{2}e^{-\pi i/3}\mathrm{Hi}% \left(ze^{2\pi i/3}\right)}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))=(1)/(2)*exp(Pi*I/ 3)*AiryBi(z*exp(- 2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))-AiryAi(z*exp(- 2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))+(1)/(2)*exp(- Pi*I/ 3)*AiryBi(z*exp(2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(2*Pi*I/ 3))))-AiryAi(z*exp(2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(2*Pi*I/ 3)))) ScorerGi[z]=Divide[1,2]*Exp[Pi*I/ 3]*ScorerHi[z*Exp[- 2*Pi*I/ 3]]+Divide[1,2]*Exp[- Pi*I/ 3]*ScorerHi[z*Exp[2*Pi*I/ 3]] Failure Successful
Fail
.6194989342-.2058648052*I <- {z = 2^(1/2)+I*2^(1/2)}
.6194989342+.2058648052*I <- {z = 2^(1/2)-I*2^(1/2)}
1.652883055+1.203317832*I <- {z = -2^(1/2)-I*2^(1/2)}
1.652883056-1.203317832*I <- {z = -2^(1/2)+I*2^(1/2)}
-
9.12.E13 Gi ( z ) = e - π i / 3 Hi ( z e + 2 π i / 3 ) + i Ai ( z ) Scorer-Gi 𝑧 superscript 𝑒 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 𝑖 Airy-Ai 𝑧 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=e^{-\pi i/3}\mathrm{Hi}% \left(ze^{+2\pi i/3}\right)+i\mathrm{Ai}\left(z\right)}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= exp(- Pi*I/ 3)*AiryBi(z*exp(+ 2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(+ 2*Pi*I/ 3))))-AiryAi(z*exp(+ 2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(+ 2*Pi*I/ 3))))+ I*AiryAi(z) ScorerGi[z]= Exp[- Pi*I/ 3]*ScorerHi[z*Exp[+ 2*Pi*I/ 3]]+ I*AiryAi[z] Failure Successful
Fail
.1301354555-.9994650010e-1*I <- {z = 2^(1/2)+I*2^(1/2)}
.5221313133+.4008588212*I <- {z = 2^(1/2)-I*2^(1/2)}
.340645583e-1+.100353266*I <- {z = -2^(1/2)-I*2^(1/2)}
2.243678175-.228349494*I <- {z = -2^(1/2)+I*2^(1/2)}
-
9.12.E13 Gi ( z ) = e + π i / 3 Hi ( z e - 2 π i / 3 ) - i Ai ( z ) Scorer-Gi 𝑧 superscript 𝑒 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 𝑖 Airy-Ai 𝑧 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=e^{+\pi i/3}\mathrm{Hi}% \left(ze^{-2\pi i/3}\right)-i\mathrm{Ai}\left(z\right)}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= exp(+ Pi*I/ 3)*AiryBi(z*exp(- 2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))-AiryAi(z*exp(- 2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))- I*AiryAi(z) ScorerGi[z]= Exp[+ Pi*I/ 3]*ScorerHi[z*Exp[- 2*Pi*I/ 3]]- I*AiryAi[z] Failure Successful
Fail
.5221313133-.4008588212*I <- {z = 2^(1/2)+I*2^(1/2)}
.1301354555+.9994650010e-1*I <- {z = 2^(1/2)-I*2^(1/2)}
2.243678175+.228349494*I <- {z = -2^(1/2)-I*2^(1/2)}
.340645583e-1-.100353266*I <- {z = -2^(1/2)+I*2^(1/2)}
-
9.12.E14 Hi ( z ) = e + 2 π i / 3 Hi ( z e + 2 π i / 3 ) + 2 e - π i / 6 Ai ( z e - 2 π i / 3 ) Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 2 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=e^{+2\pi i/3}\mathrm{Hi}% \left(ze^{+2\pi i/3}\right)+2e^{-\pi i/6}\mathrm{Ai}\left(ze^{-2\pi i/3}\right% )}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= exp(+ 2*Pi*I/ 3)*AiryBi(z*exp(+ 2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(+ 2*Pi*I/ 3))))-AiryAi(z*exp(+ 2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(+ 2*Pi*I/ 3))))+ 2*exp(- Pi*I/ 6)*AiryAi(z*exp(- 2*Pi*I/ 3)) ScorerHi[z]= Exp[+ 2*Pi*I/ 3]*ScorerHi[z*Exp[+ 2*Pi*I/ 3]]+ 2*Exp[- Pi*I/ 6]*AiryAi[z*Exp[- 2*Pi*I/ 3]] Failure Successful
Fail
-.1731124148-.2254012203*I <- {z = 2^(1/2)+I*2^(1/2)}
.6943078446-.9043579630*I <- {z = 2^(1/2)-I*2^(1/2)}
.1738169473-.59001540e-1*I <- {z = -2^(1/2)-I*2^(1/2)}
-.3955129264-3.886164592*I <- {z = -2^(1/2)+I*2^(1/2)}
-
9.12.E14 Hi ( z ) = e - 2 π i / 3 Hi ( z e - 2 π i / 3 ) + 2 e + π i / 6 Ai ( z e + 2 π i / 3 ) Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 Scorer-Hi 𝑧 superscript 𝑒 2 𝜋 𝑖 3 2 superscript 𝑒 𝜋 𝑖 6 Airy-Ai 𝑧 superscript 𝑒 2 𝜋 𝑖 3 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=e^{-2\pi i/3}\mathrm{Hi}% \left(ze^{-2\pi i/3}\right)+2e^{+\pi i/6}\mathrm{Ai}\left(ze^{+2\pi i/3}\right% )}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))= exp(- 2*Pi*I/ 3)*AiryBi(z*exp(- 2*Pi*I/ 3))*(int(AiryAi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))-AiryAi(z*exp(- 2*Pi*I/ 3))*(int(AiryBi(t), t = -infinity .. (z*exp(- 2*Pi*I/ 3))))+ 2*exp(+ Pi*I/ 6)*AiryAi(z*exp(+ 2*Pi*I/ 3)) ScorerHi[z]= Exp[- 2*Pi*I/ 3]*ScorerHi[z*Exp[- 2*Pi*I/ 3]]+ 2*Exp[+ Pi*I/ 6]*AiryAi[z*Exp[+ 2*Pi*I/ 3]] Failure Successful
Fail
.6943078446+.9043579630*I <- {z = 2^(1/2)+I*2^(1/2)}
-.1731124148+.2254012203*I <- {z = 2^(1/2)-I*2^(1/2)}
-.3955129264+3.886164592*I <- {z = -2^(1/2)-I*2^(1/2)}
.1738169473+.59001540e-1*I <- {z = -2^(1/2)+I*2^(1/2)}
-
9.12.E15 Gi ( z ) = 3 - 2 / 3 π k = 0 cos ( 2 k - 1 3 π ) Γ ( k + 1 3 ) ( 3 1 / 3 z ) k k ! Scorer-Gi 𝑧 superscript 3 2 3 𝜋 superscript subscript 𝑘 0 2 𝑘 1 3 𝜋 Euler-Gamma 𝑘 1 3 superscript superscript 3 1 3 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=\frac{3^{-2/3}}{\pi}\*% \sum_{k=0}^{\infty}\cos\left(\frac{2k-1}{3}\pi\right)\Gamma\left(\frac{k+1}{3}% \right)\frac{(3^{1/3}z)^{k}}{k!}}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))=((3)^(- 2/ 3))/(Pi)* sum(cos((2*k - 1)/(3)*Pi)*GAMMA((k + 1)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity) ScorerGi[z]=Divide[(3)^(- 2/ 3),Pi]* Sum[Cos[Divide[2*k - 1,3]*Pi]*Gamma[Divide[k + 1,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}] Failure Successful Skip -
9.12.E16 Gi ( z ) = 3 - 1 / 3 π k = 0 cos ( 2 k + 1 3 π ) Γ ( k + 2 3 ) ( 3 1 / 3 z ) k k ! diffop Scorer-Gi 1 𝑧 superscript 3 1 3 𝜋 superscript subscript 𝑘 0 2 𝑘 1 3 𝜋 Euler-Gamma 𝑘 2 3 superscript superscript 3 1 3 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\mathrm{Gi}'\left(z\right)=\frac{3^{-1/3}}{\pi}\*% \sum_{k=0}^{\infty}\cos\left(\frac{2k+1}{3}\pi\right)\Gamma\left(\frac{k+2}{3}% \right)\frac{(3^{1/3}z)^{k}}{k!}}} subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = (temp) .. infinity))+AiryAi(temp)*(int(AiryBi(t), t = 0 .. (temp))), temp$(1) ) )=((3)^(- 1/ 3))/(Pi)* sum(cos((2*k + 1)/(3)*Pi)*GAMMA((k + 2)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity) (D[ScorerGi[temp], {temp, 1}]/.temp-> z)=Divide[(3)^(- 1/ 3),Pi]* Sum[Cos[Divide[2*k + 1,3]*Pi]*Gamma[Divide[k + 2,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}] Failure Successful Skip -
9.12.E17 Hi ( z ) = 3 - 2 / 3 π k = 0 Γ ( k + 1 3 ) ( 3 1 / 3 z ) k k ! Scorer-Hi 𝑧 superscript 3 2 3 𝜋 superscript subscript 𝑘 0 Euler-Gamma 𝑘 1 3 superscript superscript 3 1 3 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=\frac{3^{-2/3}}{\pi}\sum% _{k=0}^{\infty}\Gamma\left(\frac{k+1}{3}\right)\frac{(3^{1/3}z)^{k}}{k!}}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=((3)^(- 2/ 3))/(Pi)*sum(GAMMA((k + 1)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity) ScorerHi[z]=Divide[(3)^(- 2/ 3),Pi]*Sum[Gamma[Divide[k + 1,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}] Failure Successful Skip -
9.12.E18 Hi ( z ) = 3 - 1 / 3 π k = 0 Γ ( k + 2 3 ) ( 3 1 / 3 z ) k k ! diffop Scorer-Hi 1 𝑧 superscript 3 1 3 𝜋 superscript subscript 𝑘 0 Euler-Gamma 𝑘 2 3 superscript superscript 3 1 3 𝑧 𝑘 𝑘 {\displaystyle{\displaystyle\mathrm{Hi}'\left(z\right)=\frac{3^{-1/3}}{\pi}% \sum_{k=0}^{\infty}\Gamma\left(\frac{k+2}{3}\right)\frac{(3^{1/3}z)^{k}}{k!}}} subs( temp=z, diff( AiryBi(temp)*(int(AiryAi(t), t = -infinity .. (temp)))-AiryAi(temp)*(int(AiryBi(t), t = -infinity .. (temp))), temp$(1) ) )=((3)^(- 1/ 3))/(Pi)*sum(GAMMA((k + 2)/(3))*(((3)^(1/ 3)* z)^(k))/(factorial(k)), k = 0..infinity) (D[ScorerHi[temp], {temp, 1}]/.temp-> z)=Divide[(3)^(- 1/ 3),Pi]*Sum[Gamma[Divide[k + 2,3]]*Divide[((3)^(1/ 3)* z)^(k),(k)!], {k, 0, Infinity}] Failure Successful Skip -
9.12.E19 Gi ( x ) = 1 π 0 sin ( 1 3 t 3 + x t ) d t Scorer-Gi 𝑥 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Gi}\left(x\right)=\frac{1}{\pi}\int_{0}^{% \infty}\sin\left(\tfrac{1}{3}t^{3}+xt\right)\mathrm{d}t}} AiryBi(x)*(int(AiryAi(t), t = (x) .. infinity))+AiryAi(x)*(int(AiryBi(t), t = 0 .. (x)))=(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity) ScorerGi[x]=Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}] Failure Failure Skip Successful
9.12.E20 Hi ( z ) = 1 π 0 exp ( - 1 3 t 3 + z t ) d t Scorer-Hi 𝑧 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=\frac{1}{\pi}\int_{0}^{% \infty}\exp\left(-\tfrac{1}{3}t^{3}+zt\right)\mathrm{d}t}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ z*t), t = 0..infinity) ScorerHi[z]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ z*t], {t, 0, Infinity}] Failure Failure Skip Successful
9.12.E21 Gi ( z ) = - 1 π 0 exp ( - 1 3 t 3 - 1 2 z t ) cos ( 1 2 3 z t + 2 3 π ) d t Scorer-Gi 𝑧 1 𝜋 superscript subscript 0 1 3 superscript 𝑡 3 1 2 𝑧 𝑡 1 2 3 𝑧 𝑡 2 3 𝜋 𝑡 {\displaystyle{\displaystyle\mathrm{Gi}\left(z\right)=-\frac{1}{\pi}\int_{0}^{% \infty}\exp\left(-\tfrac{1}{3}t^{3}-\tfrac{1}{2}zt\right)\cos\left(\tfrac{1}{2% }\sqrt{3}zt+\tfrac{2}{3}\pi\right)\mathrm{d}t}} AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))= -(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)-(1)/(2)*z*t)*cos((1)/(2)*sqrt(3)*z*t +(2)/(3)*Pi), t = 0..infinity) ScorerGi[z]= -Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)-Divide[1,2]*z*t]*Cos[Divide[1,2]*Sqrt[3]*z*t +Divide[2,3]*Pi], {t, 0, Infinity}] Failure Failure Skip Error
9.12.E22 Hi ( - z ) = 4 z 2 3 3 / 2 π 2 0 K 1 / 3 ( t ) ζ 2 + t 2 d t Scorer-Hi 𝑧 4 superscript 𝑧 2 superscript 3 3 2 superscript 𝜋 2 superscript subscript 0 modified-Bessel-second-kind 1 3 𝑡 superscript 𝜁 2 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\mathrm{Hi}\left(-z\right)=\frac{4z^{2}}{3^{3/2}% \pi^{2}}\int_{0}^{\infty}\frac{K_{1/3}\left(t\right)}{\zeta^{2}+t^{2}}\mathrm{% d}t}} AiryBi(- z)*(int(AiryAi(t), t = -infinity .. (- z)))-AiryAi(- z)*(int(AiryBi(t), t = -infinity .. (- z)))=(4*(z)^(2))/((3)^(3/ 2)* (Pi)^(2))*int((BesselK(1/ 3, t))/((2)/(3)*((z)^((3)/(2)))^(2)+ (t)^(2)), t = 0..infinity) ScorerHi[- z]=Divide[4*(z)^(2),(3)^(3/ 2)* (Pi)^(2)]*Integrate[Divide[BesselK[1/ 3, t],Divide[2,3]*((z)^(Divide[3,2]))^(2)+ (t)^(2)], {t, 0, Infinity}] Failure Failure Skip
Fail
Complex[0.04337928599820519, -0.02597020526100885] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.04337928599820519, 0.02597020526100885] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
9.12.E24 Hi ( z ) = 3 - 2 / 3 2 π 2 i - i i Γ ( 1 3 + 1 3 t ) Γ ( - t ) ( 3 1 / 3 e π i z ) t d t Scorer-Hi 𝑧 superscript 3 2 3 2 superscript 𝜋 2 𝑖 superscript subscript 𝑖 𝑖 Euler-Gamma 1 3 1 3 𝑡 Euler-Gamma 𝑡 superscript superscript 3 1 3 superscript 𝑒 𝜋 𝑖 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Hi}\left(z\right)=\frac{3^{-2/3}}{2\pi^{2}% i}\int_{-i\infty}^{i\infty}\Gamma\left(\tfrac{1}{3}+\tfrac{1}{3}t\right)\Gamma% \left(-t\right)(3^{1/3}e^{\pi i}z)^{t}\mathrm{d}t}} AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z)))=((3)^(- 2/ 3))/(2*(Pi)^(2)* I)*int(GAMMA((1)/(3)+(1)/(3)*t)*GAMMA(- t)*((3)^(1/ 3)* exp(Pi*I)*z)^(t), t = - I*infinity..I*infinity) ScorerHi[z]=Divide[(3)^(- 2/ 3),2*(Pi)^(2)* I]*Integrate[Gamma[Divide[1,3]+Divide[1,3]*t]*Gamma[- t]*((3)^(1/ 3)* Exp[Pi*I]*z)^(t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
9.13.E13 d 2 w d t 2 = 1 4 m 2 t m - 2 w derivative 𝑤 𝑡 2 1 4 superscript 𝑚 2 superscript 𝑡 𝑚 2 𝑤 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}t}^{2}}=\tfrac% {1}{4}m^{2}t^{m-2}w}} diff(w, [t$(2)])=(1)/(4)*(m)^(2)* (t)^(m - 2)* w D[w, {t, 2}]=Divide[1,4]*(m)^(2)* (t)^(m - 2)* w Failure Failure
Fail
-.2500000000 <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 1}
-1.414213562-1.414213562*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 2}
-0.-8.999999996*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), m = 3}
-0.+.2500000000*I <- {t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Error
9.13.E20 U 1 ( x , α ) = 1 ( α + 2 ) 1 / ( α + 2 ) Γ ( α + 1 α + 2 ) x 1 / 2 J - 1 / ( α + 2 ) ( 2 α + 2 x ( α + 2 ) / 2 ) subscript 𝑈 1 𝑥 𝛼 1 superscript 𝛼 2 1 𝛼 2 Euler-Gamma 𝛼 1 𝛼 2 superscript 𝑥 1 2 Bessel-J 1 𝛼 2 2 𝛼 2 superscript 𝑥 𝛼 2 2 {\displaystyle{\displaystyle U_{1}(x,\alpha)=\frac{1}{(\alpha+2)^{1/(\alpha+2)% }}\*\Gamma\left(\frac{\alpha+1}{\alpha+2}\right)x^{1/2}J_{-1/(\alpha+2)}\left(% \frac{2}{\alpha+2}x^{(\alpha+2)/2}\right)}} U[1]*(x , alpha)=(1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/ 2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/ 2)) Subscript[U, 1]*(x , \[Alpha])=Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/ 2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/ 2)] Failure Failure Error Error
9.13.E21 U 2 ( x , α ) = ( α + 2 ) 1 / ( α + 2 ) Γ ( α + 3 α + 2 ) x 1 / 2 J 1 / ( α + 2 ) ( 2 α + 2 x ( α + 2 ) / 2 ) subscript 𝑈 2 𝑥 𝛼 superscript 𝛼 2 1 𝛼 2 Euler-Gamma 𝛼 3 𝛼 2 superscript 𝑥 1 2 Bessel-J 1 𝛼 2 2 𝛼 2 superscript 𝑥 𝛼 2 2 {\displaystyle{\displaystyle U_{2}(x,\alpha)=(\alpha+2)^{1/(\alpha+2)}\*\Gamma% \left(\frac{\alpha+3}{\alpha+2}\right)x^{1/2}J_{1/(\alpha+2)}\left(\frac{2}{% \alpha+2}x^{(\alpha+2)/2}\right)}} U[2]*(x , alpha)=(alpha + 2)^(1/(alpha + 2))* GAMMA((alpha + 3)/(alpha + 2))*(x)^(1/ 2)* BesselJ(1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/ 2)) Subscript[U, 2]*(x , \[Alpha])=(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))* Gamma[Divide[\[Alpha]+ 3,\[Alpha]+ 2]]*(x)^(1/ 2)* BesselJ[1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/ 2)] Failure Failure Error Error
9.13.E23 U 1 ( x , α ) = π 1 / 2 2 ( m + 2 ) / ( 2 m ) Γ ( 1 / m ) ( W m ( t ) + W m ( - t ) ) subscript 𝑈 1 𝑥 𝛼 superscript 𝜋 1 2 superscript 2 𝑚 2 2 𝑚 Euler-Gamma 1 𝑚 subscript 𝑊 𝑚 𝑡 subscript 𝑊 𝑚 𝑡 {\displaystyle{\displaystyle U_{1}(x,\alpha)=\frac{\pi^{1/2}}{2^{(m+2)/(2m)}% \Gamma\left(1/m\right)}\left(W_{m}(t)+W_{m}(-t)\right)}} U[1]*(x , alpha)=((Pi)^(1/ 2))/((2)^((m + 2)/(2*m))* GAMMA(1/ m))*(W[m]*(t)+ W[m]*(- t)) Subscript[U, 1]*(x , \[Alpha])=Divide[(Pi)^(1/ 2),(2)^((m + 2)/(2*m))* Gamma[1/ m]]*(Subscript[W, m]*(t)+ Subscript[W, m]*(- t)) Failure Failure Error Error
9.13.E24 U 2 ( x , α ) = π 1 / 2 m 2 / m 2 ( m + 2 ) / ( 2 m ) Γ ( - 1 / m ) ( W m ( t ) - W m ( - t ) ) subscript 𝑈 2 𝑥 𝛼 superscript 𝜋 1 2 superscript 𝑚 2 𝑚 superscript 2 𝑚 2 2 𝑚 Euler-Gamma 1 𝑚 subscript 𝑊 𝑚 𝑡 subscript 𝑊 𝑚 𝑡 {\displaystyle{\displaystyle U_{2}(x,\alpha)=\frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/% (2m)}\Gamma\left(-1/m\right)}\left(W_{m}(t){-}W_{m}(-t)\right)}} U[2]*(x , alpha)=((Pi)^(1/ 2)* (m)^(2/ m))/((2)^((m + 2)/(2*m))* GAMMA(- 1/ m))*(W[m]*(t)- W[m]*(- t)) Subscript[U, 2]*(x , \[Alpha])=Divide[(Pi)^(1/ 2)* (m)^(2/ m),(2)^((m + 2)/(2*m))* Gamma[- 1/ m]]*(Subscript[W, m]*(t)- Subscript[W, m]*(- t)) Failure Failure Skip Error