Definition:monicdualqKrawtchouk

From DRMF
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \monicdualqKrawtchouk represents the monic dual q π‘ž {\displaystyle{\displaystyle q}} Krawtchouk polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\monicdualqKrawtchouk{n} produces K ^ n dual-q-Krawtchouk-polynomial-monic-p 𝑛 {\displaystyle{\displaystyle{\displaystyle{\widehat{K}}_{n}}}}
\monicdualqKrawtchouk{n}@{\lambda(x)}{c}{N}{q} produces K ^ n ⁑ ( Ξ» ⁒ ( x ) ; c , N | q ) dual-q-Krawtchouk-polynomial-monic-p 𝑛 πœ† π‘₯ 𝑐 𝑁 π‘ž {\displaystyle{\displaystyle{\displaystyle{\widehat{K}}_{n}\!\left(\lambda(x);% c,N|q\right)}}}
\monicdualqKrawtchouk{n}@@{\lambda(x)}{c}{N}{q} produces K ^ n ⁑ ( Ξ» ⁒ ( x ) ) dual-q-Krawtchouk-polynomial-monic-p 𝑛 πœ† π‘₯ 𝑐 𝑁 π‘ž {\displaystyle{\displaystyle{\displaystyle{\widehat{K}}_{n}\!\left(\lambda(x)% \right)}}}

These are defined by K n ⁑ ( Ξ» ⁒ ( x ) ; c , N | q ) = : 1 ( q - N ; q ) n K ^ n ⁑ ( Ξ» ( x ) ) . fragments dual-q-Krawtchouk-polynomial-K 𝑛 πœ† π‘₯ 𝑐 𝑁 π‘ž : 1 q-Pochhammer-symbol superscript π‘ž 𝑁 π‘ž 𝑛 dual-q-Krawtchouk-polynomial-monic-p 𝑛 fragments Ξ» fragments ( x 𝑐 𝑁 π‘ž ) . {\displaystyle{\displaystyle{\displaystyle K_{n}\!\left(\lambda(x);c,N|q\right% )=:\frac{1}{\left(q^{-N};q\right)_{n}}{\widehat{K}}_{n}\!\left(\lambda(x\right% )).}}}

Symbols List

K ^ n subscript ^ 𝐾 𝑛 {\displaystyle{\displaystyle{\displaystyle{\widehat{K}}_{n}}}}  : monic dual q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:monicdualqKrawtchouk
K n subscript 𝐾 𝑛 {\displaystyle{\displaystyle{\displaystyle K_{n}}}}  : dual q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:dualqKrawtchouk
( a ; q ) n subscript π‘Ž π‘ž 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1