Definition:qKrawtchouk
The LaTeX DLMF and DRMF macro \qKrawtchouk represents the Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q} -Krawtchouk polynomial.
This macro is in the category of polynomials.
In math mode, this macro can be called in the following ways:
- \qKrawtchouk{n} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qKrawtchouk{n}}}
- \qKrawtchouk{n}@{q^{-x}}{p}{N}{q} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qKrawtchouk{n}@{q^{-x}}{p}{N}{q}}}
- \qKrawtchouk{n}@@{q^{-x}}{p}{N}{q} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qKrawtchouk{n}@@{q^{-x}}{p}{N}{q}}}
These are defined by Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qKrawtchouk{n}@{q^{-x}}{p}{N}{q}:=\qHyperrphis{3}{2}@@{q^{-n},q^{-x},-pq^n}{q^{-N},0}{q}{q}. \end{equation} }
Symbols List
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle K_{n}}}
: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}}
-Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:qKrawtchouk
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{r}\phi_{s}}}}
: basic hypergeometric (or Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}}
-hypergeometric) function : http://dlmf.nist.gov/17.4#E1