Formula:KLS:14.02:09
Substitution(s)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x)=x(x+\gamma+\delta+1)}}
&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C_n=\frac{q(1-q^n)(1-\beta q^n)(\gamma-\alpha\beta q^n)(\delta-\alpha q^n)} {(1-\alpha\beta q^{2n})(1-\alpha\beta q^{2n+1})}}}
&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle A_n=\frac{(1-\alpha q^{n+1})(1-\alpha\beta q^{n+1})(1-\beta\delta q^{n+1})(1-\gamma q^{n+1})} {(1-\alpha\beta q^{2n+1})(1-\alpha\beta q^{2n+2})}}}
&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mu(x):=q^{-x}+\gamma\delta q^{x+1}}}
&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mu(x)=q^{-x}+\gamma\delta q^{x+1} =\lambda(x)=q^{-x}+cq^{x-N} =q^{-x}+q^{x+\gamma+\delta+1} =2a\cos@@{\theta}}}
&
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle R_{n}}}
: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}}
-Racah polynomial : http://dlmf.nist.gov/18.28#E19
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{cos}}}
: cosine function : http://dlmf.nist.gov/4.14#E2
Bibliography
Equation in Section 14.2 of KLS.
URL links
We ask users to provide relevant URL links in this space.