Results of Incomplete Gamma and Related Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.2.E1 γ ( a , z ) = 0 z t a - 1 e - t d t incomplete-gamma 𝑎 𝑧 superscript subscript 0 𝑧 superscript 𝑡 𝑎 1 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle\gamma\left(a,z\right)=\int_{0}^{z}t^{a-1}e^{-t}% \mathrm{d}t}} GAMMA(a)-GAMMA(a, z)= int((t)^(a - 1)* exp(- t), t = 0..z) Gamma[a, 0, z]= Integrate[(t)^(a - 1)* Exp[- t], {t, 0, z}] Failure Successful Skip -
8.2.E2 Γ ( a , z ) = z t a - 1 e - t d t incomplete-Gamma 𝑎 𝑧 superscript subscript 𝑧 superscript 𝑡 𝑎 1 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\int_{z}^{\infty}t^{a-1}e^{% -t}\mathrm{d}t}} GAMMA(a, z)= int((t)^(a - 1)* exp(- t), t = z..infinity) Gamma[a, z]= Integrate[(t)^(a - 1)* Exp[- t], {t, z, Infinity}] Failure Failure Skip Successful
8.2.E3 γ ( a , z ) + Γ ( a , z ) = Γ ( a ) incomplete-gamma 𝑎 𝑧 incomplete-Gamma 𝑎 𝑧 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\gamma\left(a,z\right)+\Gamma\left(a,z\right)=% \Gamma\left(a\right)}} GAMMA(a)-GAMMA(a, z)+ GAMMA(a, z)= GAMMA(a) Gamma[a, 0, z]+ Gamma[a, z]= Gamma[a] Successful Successful - -
8.2#Ex1 P ( a , z ) = γ ( a , z ) Γ ( a ) incomplete-gamma-P 𝑎 𝑧 incomplete-gamma 𝑎 𝑧 Euler-Gamma 𝑎 {\displaystyle{\displaystyle P\left(a,z\right)=\frac{\gamma\left(a,z\right)}{% \Gamma\left(a\right)}}} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(GAMMA(a)-GAMMA(a, z))/(GAMMA(a)) GammaRegularized[a, 0, z]=Divide[Gamma[a, 0, z],Gamma[a]] Successful Successful - -
8.2#Ex2 Q ( a , z ) = Γ ( a , z ) Γ ( a ) incomplete-gamma-Q 𝑎 𝑧 incomplete-Gamma 𝑎 𝑧 Euler-Gamma 𝑎 {\displaystyle{\displaystyle Q\left(a,z\right)=\frac{\Gamma\left(a,z\right)}{% \Gamma\left(a\right)}}} GAMMA(a, z)/GAMMA(a)=(GAMMA(a, z))/(GAMMA(a)) GammaRegularized[a, z]=Divide[Gamma[a, z],Gamma[a]] Successful Successful - -
8.2.E5 P ( a , z ) + Q ( a , z ) = 1 incomplete-gamma-P 𝑎 𝑧 incomplete-gamma-Q 𝑎 𝑧 1 {\displaystyle{\displaystyle P\left(a,z\right)+Q\left(a,z\right)=1}} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)+ GAMMA(a, z)/GAMMA(a)= 1 GammaRegularized[a, 0, z]+ GammaRegularized[a, z]= 1 Successful Successful - -
8.2.E6 γ * ( a , z ) = z - a P ( a , z ) incomplete-gamma-star 𝑎 𝑧 superscript 𝑧 𝑎 incomplete-gamma-P 𝑎 𝑧 {\displaystyle{\displaystyle\gamma^{*}\left(a,z\right)=z^{-a}P\left(a,z\right)}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= (z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a) Error Successful Error - -
8.2.E6 z - a P ( a , z ) = z - a Γ ( a ) γ ( a , z ) superscript 𝑧 𝑎 incomplete-gamma-P 𝑎 𝑧 superscript 𝑧 𝑎 Euler-Gamma 𝑎 incomplete-gamma 𝑎 𝑧 {\displaystyle{\displaystyle z^{-a}P\left(a,z\right)=\frac{z^{-a}}{\Gamma\left% (a\right)}\gamma\left(a,z\right)}} (z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=((z)^(- a))/(GAMMA(a))*GAMMA(a)-GAMMA(a, z) (z)^(- a)* GammaRegularized[a, 0, z]=Divide[(z)^(- a),Gamma[a]]*Gamma[a, 0, z] Failure Successful
Fail
.3504429851+.4826856014*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4474572306+.2704599710*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
23.62700226+82.69161801*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
3.420707652-13.57627439*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.2.E7 γ * ( a , z ) = 1 Γ ( a ) 0 1 t a - 1 e - z t d t incomplete-gamma-star 𝑎 𝑧 1 Euler-Gamma 𝑎 superscript subscript 0 1 superscript 𝑡 𝑎 1 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\gamma^{*}\left(a,z\right)=\frac{1}{\Gamma\left(a% \right)}\int_{0}^{1}t^{a-1}e^{-zt}\mathrm{d}t}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(1)/(GAMMA(a))*int((t)^(a - 1)* exp(- z*t), t = 0..1) Error Failure Error Skip -
8.2.E8 γ ( a , z e 2 π m i ) = e 2 π m i a γ ( a , z ) incomplete-gamma 𝑎 𝑧 superscript 𝑒 2 𝜋 𝑚 𝑖 superscript 𝑒 2 𝜋 𝑚 𝑖 𝑎 incomplete-gamma 𝑎 𝑧 {\displaystyle{\displaystyle\gamma\left(a,ze^{2\pi mi}\right)=e^{2\pi mia}% \gamma\left(a,z\right)}} GAMMA(a)-GAMMA(a, z*exp(2*Pi*m*I))= exp(2*Pi*m*I*a)*GAMMA(a)-GAMMA(a, z) Gamma[a, 0, z*Exp[2*Pi*m*I]]= Exp[2*Pi*m*I*a]*Gamma[a, 0, z] Failure Failure Successful Successful
8.2.E9 Γ ( a , z e 2 π m i ) = e 2 π m i a Γ ( a , z ) + ( 1 - e 2 π m i a ) Γ ( a ) incomplete-Gamma 𝑎 𝑧 superscript 𝑒 2 𝜋 𝑚 𝑖 superscript 𝑒 2 𝜋 𝑚 𝑖 𝑎 incomplete-Gamma 𝑎 𝑧 1 superscript 𝑒 2 𝜋 𝑚 𝑖 𝑎 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\Gamma\left(a,ze^{2\pi mi}\right)=e^{2\pi mia}% \Gamma\left(a,z\right)+(1-e^{2\pi mia})\Gamma\left(a\right)}} GAMMA(a, z*exp(2*Pi*m*I))= exp(2*Pi*m*I*a)*GAMMA(a, z)+(1 - exp(2*Pi*m*I*a))* GAMMA(a) Gamma[a, z*Exp[2*Pi*m*I]]= Exp[2*Pi*m*I*a]*Gamma[a, z]+(1 - Exp[2*Pi*m*I*a])* Gamma[a] Failure Failure
Fail
-.2249049111-.4410511843e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
-.2248750758-.4411585330e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.2248750795-.4411584875e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
-1.005323136+.3326243216*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Fail
Complex[-0.22490491118791595, -0.04410511845656586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.2248750764783257, -0.044115852492705915] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.22487507925834865, -0.04411584909968558] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.0053231382729926, 0.33262432134470665] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E10 e - π i a Γ ( a , z e π i ) - e π i a Γ ( a , z e - π i ) = - 2 π i Γ ( 1 - a ) superscript 𝑒 𝜋 𝑖 𝑎 incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝜋 𝑖 𝑎 incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 2 𝜋 𝑖 Euler-Gamma 1 𝑎 {\displaystyle{\displaystyle e^{-\pi ia}\Gamma\left(a,ze^{\pi i}\right)-e^{\pi ia% }\Gamma\left(a,ze^{-\pi i}\right)=-\frac{2\pi i}{\Gamma\left(1-a\right)}}} exp(- Pi*I*a)*GAMMA(a, z*exp(Pi*I))- exp(Pi*I*a)*GAMMA(a, z*exp(- Pi*I))= -(2*Pi*I)/(GAMMA(1 - a)) Exp[- Pi*I*a]*Gamma[a, z*Exp[Pi*I]]- Exp[Pi*I*a]*Gamma[a, z*Exp[- Pi*I]]= -Divide[2*Pi*I,Gamma[1 - a]] Failure Failure
Fail
-7167.292469-174.9289096*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.16987973+12.77160007*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
8.705606105-17.43270949*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-4.50134822-89.91653387*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-7167.2924809060105, -174.9289096706231] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.169879706441371, 12.771600034859095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[8.70560609871773, -17.43270953363519] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.501348191090425, -89.91653394957189] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E11 Γ ( a , z e + π i ) = Γ ( a ) ( 1 - z a e + π i a γ * ( a , - z ) ) incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 Euler-Gamma 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝜋 𝑖 𝑎 incomplete-gamma-star 𝑎 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,ze^{+\pi i}\right)=\Gamma\left(a% \right)(1-z^{a}e^{+\pi ia}\gamma^{*}\left(a,-z\right))}} GAMMA(a, z*exp(+ Pi*I))= GAMMA(a)*(1 - (z)^(a)* exp(+ Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a)) Error Failure Error
Fail
20.46249972+81.80630504*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.005323138+.3326243220*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1095.761010-111.2868863*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1231.554386+1108.053849*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.2.E11 Γ ( a , z e - π i ) = Γ ( a ) ( 1 - z a e - π i a γ * ( a , - z ) ) incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 Euler-Gamma 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝜋 𝑖 𝑎 incomplete-gamma-star 𝑎 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,ze^{-\pi i}\right)=\Gamma\left(a% \right)(1-z^{a}e^{-\pi ia}\gamma^{*}\left(a,-z\right))}} GAMMA(a, z*exp(- Pi*I))= GAMMA(a)*(1 - (z)^(a)* exp(- Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a)) Error Failure Error
Fail
1095.761010+111.2868863*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1231.554386-1108.053849*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
20.46249972-81.80630504*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.005323138-.3326243220*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
-
8.2.E12 d 2 w d z 2 + ( 1 + 1 - a z ) d w d z = 0 derivative 𝑤 𝑧 2 1 1 𝑎 𝑧 derivative 𝑤 𝑧 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% 1+\frac{1-a}{z}\right)\frac{\mathrm{d}w}{\mathrm{d}z}=0}} diff(w, [z$(2)])+(1 +(1 - a)/(z))* diff(w, z)= 0 D[w, {z, 2}]+(1 +Divide[1 - a,z])* D[w, z]= 0 Successful Successful - -
8.2.E13 d 2 w d z 2 - ( 1 + 1 - a z ) d w d z + 1 - a z 2 w = 0 derivative 𝑤 𝑧 2 1 1 𝑎 𝑧 derivative 𝑤 𝑧 1 𝑎 superscript 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}-\left(% 1+\frac{1-a}{z}\right)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{1-a}{z^{2}}w=0}} diff(w, [z$(2)])-(1 +(1 - a)/(z))* diff(w, z)+(1 - a)/((z)^(2))*w = 0 D[w, {z, 2}]-(1 +Divide[1 - a,z])* D[w, z]+Divide[1 - a,(z)^(2)]*w = 0 Failure Failure
Fail
-.6464466093-.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.6464466093+.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.6464466093-.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.6464466093+.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.6464466094067263, -0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6464466094067263, 0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6464466094067263, -0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.6464466094067263, 0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E14 z d 2 γ * d z 2 + ( a + 1 + z ) d γ * d z + a γ * = 0 𝑧 derivative incomplete-gamma-star 𝑧 2 𝑎 1 𝑧 derivative incomplete-gamma-star 𝑧 𝑎 incomplete-gamma-star 0 {\displaystyle{\displaystyle z\frac{{\mathrm{d}}^{2}\gamma^{*}}{{\mathrm{d}z}^% {2}}+(a+1+z)\frac{\mathrm{d}\gamma^{*}}{\mathrm{d}z}+a\gamma^{*}=0}} z*diff((+)^(-(z))*(GAMMA(z)-GAMMA(z, +))/GAMMA(z), [(a + 1 + z)*$(2)])*diff((+)^(-(z))*(GAMMA(z)-GAMMA(z, +))/GAMMA(z), a)*(0)^(-(=))*(GAMMA(=)-GAMMA(=, 0))/GAMMA(=) Error Error Error - -
8.4.E1 γ ( 1 2 , z 2 ) = 2 0 z e - t 2 d t incomplete-gamma 1 2 superscript 𝑧 2 2 superscript subscript 0 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\gamma\left(\tfrac{1}{2},z^{2}\right)=2\int_{0}^{z% }e^{-t^{2}}\mathrm{d}t}} GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))= 2*int(exp(- (t)^(2)), t = 0..z) Gamma[Divide[1,2], 0, (z)^(2)]= 2*Integrate[Exp[- (t)^(2)], {t, 0, z}] Failure Failure Skip
Fail
Complex[3.581461769189045, -0.9710415344467407] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.581461769189045, 0.9710415344467407] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
8.4.E1 2 0 z e - t 2 d t = π erf ( z ) 2 superscript subscript 0 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 𝜋 error-function 𝑧 {\displaystyle{\displaystyle 2\int_{0}^{z}e^{-t^{2}}\mathrm{d}t=\sqrt{\pi}% \operatorname{erf}\left(z\right)}} 2*int(exp(- (t)^(2)), t = 0..z)=sqrt(Pi)*erf(z) 2*Integrate[Exp[- (t)^(2)], {t, 0, z}]=Sqrt[Pi]*Erf[z] Successful Successful - -
8.4.E2 γ * ( a , 0 ) = 1 Γ ( a + 1 ) incomplete-gamma-star 𝑎 0 1 Euler-Gamma 𝑎 1 {\displaystyle{\displaystyle\gamma^{*}\left(a,0\right)=\frac{1}{\Gamma\left(a+% 1\right)}}} (0)^(-(a))*(GAMMA(a)-GAMMA(a, 0))/GAMMA(a)=(1)/(GAMMA(a + 1)) Error Failure Error
Fail
-.6493698774+1.106937485*I <- {a = 2^(1/2)+I*2^(1/2)}
-.6493698774-1.106937485*I <- {a = 2^(1/2)-I*2^(1/2)}
4.564263782+2.639434666*I <- {a = -2^(1/2)-I*2^(1/2)}
4.564263782-2.639434666*I <- {a = -2^(1/2)+I*2^(1/2)}
-
8.4.E3 γ * ( 1 2 , - z 2 ) = 2 e z 2 z π F ( z ) incomplete-gamma-star 1 2 superscript 𝑧 2 2 superscript 𝑒 superscript 𝑧 2 𝑧 𝜋 Dawsons-integral 𝑧 {\displaystyle{\displaystyle\gamma^{*}\left(\tfrac{1}{2},-z^{2}\right)=\frac{2% e^{z^{2}}}{z\sqrt{\pi}}F\left(z\right)}} (- (z)^(2))^(-((1)/(2)))*(GAMMA((1)/(2))-GAMMA((1)/(2), - (z)^(2)))/GAMMA((1)/(2))=(2*exp((z)^(2)))/(z*sqrt(Pi))*dawson(z) Error Successful Error - -
8.4.E4 Γ ( 0 , z ) = z t - 1 e - t d t incomplete-Gamma 0 𝑧 superscript subscript 𝑧 superscript 𝑡 1 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle\Gamma\left(0,z\right)=\int_{z}^{\infty}t^{-1}e^{-% t}\mathrm{d}t}} GAMMA(0, z)= int((t)^(- 1)* exp(- t), t = z..infinity) Gamma[0, z]= Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}] Successful Failure - Successful
8.4.E4 z t - 1 e - t d t = E 1 ( z ) superscript subscript 𝑧 superscript 𝑡 1 superscript 𝑒 𝑡 𝑡 exponential-integral 𝑧 {\displaystyle{\displaystyle\int_{z}^{\infty}t^{-1}e^{-t}\mathrm{d}t=E_{1}% \left(z\right)}} int((t)^(- 1)* exp(- t), t = z..infinity)= Ei(z) Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}]= -ExpIntegralEi[-(z)] Failure Failure Skip Successful
8.4.E5 Γ ( 1 , z ) = e - z incomplete-Gamma 1 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\Gamma\left(1,z\right)=e^{-z}}} GAMMA(1, z)= exp(- z) Gamma[1, z]= Exp[- z] Successful Successful - -
8.4.E6 Γ ( 1 2 , z 2 ) = 2 z e - t 2 d t incomplete-Gamma 1 2 superscript 𝑧 2 2 superscript subscript 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\Gamma\left(\tfrac{1}{2},z^{2}\right)=2\int_{z}^{% \infty}e^{-t^{2}}\mathrm{d}t}} GAMMA((1)/(2), (z)^(2))= 2*int(exp(- (t)^(2)), t = z..infinity) Gamma[Divide[1,2], (z)^(2)]= 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}] Failure Failure Skip
Fail
Complex[-3.581461769189044, 0.9710415344467407] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.581461769189044, -0.9710415344467407] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
8.4.E6 2 z e - t 2 d t = π erfc ( z ) 2 superscript subscript 𝑧 superscript 𝑒 superscript 𝑡 2 𝑡 𝜋 complementary-error-function 𝑧 {\displaystyle{\displaystyle 2\int_{z}^{\infty}e^{-t^{2}}\mathrm{d}t=\sqrt{\pi% }\operatorname{erfc}\left(z\right)}} 2*int(exp(- (t)^(2)), t = z..infinity)=sqrt(Pi)*erfc(z) 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}]=Sqrt[Pi]*Erfc[z] Successful Successful - -
8.4.E7 γ ( n + 1 , z ) = n ! ( 1 - e - z e n ( z ) ) incomplete-gamma 𝑛 1 𝑧 𝑛 1 superscript 𝑒 𝑧 subscript 𝑒 𝑛 𝑧 {\displaystyle{\displaystyle\gamma\left(n+1,z\right)=n!(1-e^{-z}e_{n}(z))}} GAMMA(n + 1)-GAMMA(n + 1, z)= factorial(n)*(1 - exp(- z)*exp(1)[n]*(z)) Gamma[n + 1, 0, z]= (n)!*(1 - Exp[- z]*Subscript[E, n]*(z)) Failure Failure Error Successful
8.4.E8 Γ ( n + 1 , z ) = n ! e - z e n ( z ) incomplete-Gamma 𝑛 1 𝑧 𝑛 superscript 𝑒 𝑧 subscript 𝑒 𝑛 𝑧 {\displaystyle{\displaystyle\Gamma\left(n+1,z\right)=n!e^{-z}e_{n}(z)}} GAMMA(n + 1, z)= factorial(n)*exp(- z)*exp(1)[n]*(z) Gamma[n + 1, z]= (n)!*Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E9 P ( n + 1 , z ) = 1 - e - z e n ( z ) incomplete-gamma-P 𝑛 1 𝑧 1 superscript 𝑒 𝑧 subscript 𝑒 𝑛 𝑧 {\displaystyle{\displaystyle P\left(n+1,z\right)=1-e^{-z}e_{n}(z)}} (GAMMA(n + 1)-GAMMA(n + 1, z))/GAMMA(n + 1)= 1 - exp(- z)*exp(1)[n]*(z) GammaRegularized[n + 1, 0, z]= 1 - Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E10 Q ( n + 1 , z ) = e - z e n ( z ) incomplete-gamma-Q 𝑛 1 𝑧 superscript 𝑒 𝑧 subscript 𝑒 𝑛 𝑧 {\displaystyle{\displaystyle Q\left(n+1,z\right)=e^{-z}e_{n}(z)}} GAMMA(n + 1, z)/GAMMA(n + 1)= exp(- z)*exp(1)[n]*(z) GammaRegularized[n + 1, z]= Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E12 γ * ( - n , z ) = z n incomplete-gamma-star 𝑛 𝑧 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\gamma^{*}\left(-n,z\right)=z^{n}}} (z)^(-(- n))*(GAMMA(- n)-GAMMA(- n, z))/GAMMA(- n)= (z)^(n) Error Failure Error
Fail
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 1}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 2}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 3}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
-
8.4.E13 Γ ( 1 - n , z ) = z 1 - n E n ( z ) incomplete-Gamma 1 𝑛 𝑧 superscript 𝑧 1 𝑛 exponential-integral-En 𝑛 𝑧 {\displaystyle{\displaystyle\Gamma\left(1-n,z\right)=z^{1-n}E_{n}\left(z\right% )}} GAMMA(1 - n, z)= (z)^(1 - n)* Ei(n, z) Gamma[1 - n, z]= (z)^(1 - n)* ExpIntegralE[n, z] Successful Successful - -
8.4.E14 Q ( n + 1 2 , z 2 ) = erfc ( z ) + e - z 2 π k = 1 n z 2 k - 1 ( 1 2 ) k incomplete-gamma-Q 𝑛 1 2 superscript 𝑧 2 complementary-error-function 𝑧 superscript 𝑒 superscript 𝑧 2 𝜋 superscript subscript 𝑘 1 𝑛 superscript 𝑧 2 𝑘 1 Pochhammer 1 2 𝑘 {\displaystyle{\displaystyle Q\left(n+\tfrac{1}{2},z^{2}\right)=\operatorname{% erfc}\left(z\right)+\frac{e^{-z^{2}}}{\sqrt{\pi}}\sum_{k=1}^{n}\frac{z^{2k-1}}% {{\left(\tfrac{1}{2}\right)_{k}}}}} GAMMA(n +(1)/(2), (z)^(2))/GAMMA(n +(1)/(2))= erfc(z)+(exp(- (z)^(2)))/(sqrt(Pi))*sum(((z)^(2*k - 1))/(pochhammer((1)/(2), k)), k = 1..n) GammaRegularized[n +Divide[1,2], (z)^(2)]= Erfc[z]+Divide[Exp[- (z)^(2)],Sqrt[Pi]]*Sum[Divide[(z)^(2*k - 1),Pochhammer[Divide[1,2], k]], {k, 1, n}] Failure Failure Skip
Fail
Complex[-6.522116143801526, 0.8770870118427658] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-7.400077458243353, -11.126893574158686] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[11.80629147935897, -12.531631677265604] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.522116143801526, -0.8770870118427658] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.4.E15 Γ ( - n , z ) = ( - 1 ) n n ! ( E 1 ( z ) - e - z k = 0 n - 1 ( - 1 ) k k ! z k + 1 ) incomplete-Gamma 𝑛 𝑧 superscript 1 𝑛 𝑛 exponential-integral 𝑧 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 𝑘 superscript 𝑧 𝑘 1 {\displaystyle{\displaystyle\Gamma\left(-n,z\right)=\frac{(-1)^{n}}{n!}\left(E% _{1}\left(z\right)-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right)}} GAMMA(- n, z)=((- 1)^(n))/(factorial(n))*(Ei(z)- exp(- z)*sum(((- 1)^(k)* factorial(k))/((z)^(k + 1)), k = 0..n - 1)) Gamma[- n, z]=Divide[(- 1)^(n),(n)!]*(-ExpIntegralEi[-(z)]- Exp[- z]*Sum[Divide[(- 1)^(k)* (k)!,(z)^(k + 1)], {k, 0, n - 1}]) Failure Failure Skip
Fail
Complex[1.3877787807814457*^-17, 3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.734723475976807*^-18, -1.5707963267948966] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.3368086899420177*^-19, 0.5235987755982987] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.3877787807814457*^-17, -3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.5.E1 γ ( a , z ) = a - 1 z a e - z M ( 1 , 1 + a , z ) incomplete-gamma 𝑎 𝑧 superscript 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 1 𝑎 𝑧 {\displaystyle{\displaystyle\gamma\left(a,z\right)=a^{-1}z^{a}e^{-z}M\left(1,1% +a,z\right)}} GAMMA(a)-GAMMA(a, z)= (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z) Gamma[a, 0, z]= (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z] Successful Successful - -
8.5.E1 a - 1 z a e - z M ( 1 , 1 + a , z ) = a - 1 z a M ( a , 1 + a , - z ) superscript 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 1 𝑎 𝑧 superscript 𝑎 1 superscript 𝑧 𝑎 Kummer-confluent-hypergeometric-M 𝑎 1 𝑎 𝑧 {\displaystyle{\displaystyle a^{-1}z^{a}e^{-z}M\left(1,1+a,z\right)=a^{-1}z^{a% }M\left(a,1+a,-z\right)}} (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z)= (a)^(- 1)* (z)^(a)* KummerM(a, 1 + a, - z) (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z]= (a)^(- 1)* (z)^(a)* Hypergeometric1F1[a, 1 + a, - z] Successful Successful - -
8.5.E2 γ * ( a , z ) = e - z 𝐌 ( 1 , 1 + a , z ) incomplete-gamma-star 𝑎 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-bold-M 1 1 𝑎 𝑧 {\displaystyle{\displaystyle\gamma^{*}\left(a,z\right)=e^{-z}{\mathbf{M}}\left% (1,1+a,z\right)}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a) Error Successful Error - -
8.5.E2 e - z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , - z ) superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-bold-M 1 1 𝑎 𝑧 Kummer-confluent-hypergeometric-bold-M 𝑎 1 𝑎 𝑧 {\displaystyle{\displaystyle e^{-z}{\mathbf{M}}\left(1,1+a,z\right)={\mathbf{M% }}\left(a,1+a,-z\right)}} exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a)= KummerM(a, 1 + a, - z)/GAMMA(1 + a) Exp[- z]*Hypergeometric1F1Regularized[1, 1 + a, z]= Hypergeometric1F1Regularized[a, 1 + a, - z] Successful Successful - -
8.5.E3 Γ ( a , z ) = e - z U ( 1 - a , 1 - a , z ) incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 1 𝑎 1 𝑎 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=e^{-z}U\left(1-a,1-a,z% \right)}} GAMMA(a, z)= exp(- z)*KummerU(1 - a, 1 - a, z) Gamma[a, z]= Exp[- z]*HypergeometricU[1 - a, 1 - a, z] Successful Successful - -
8.5.E3 e - z U ( 1 - a , 1 - a , z ) = z a e - z U ( 1 , 1 + a , z ) superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 1 𝑎 1 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 1 1 𝑎 𝑧 {\displaystyle{\displaystyle e^{-z}U\left(1-a,1-a,z\right)=z^{a}e^{-z}U\left(1% ,1+a,z\right)}} exp(- z)*KummerU(1 - a, 1 - a, z)= (z)^(a)* exp(- z)*KummerU(1, 1 + a, z) Exp[- z]*HypergeometricU[1 - a, 1 - a, z]= (z)^(a)* Exp[- z]*HypergeometricU[1, 1 + a, z] Successful Successful - -
8.5.E4 γ ( a , z ) = a - 1 z 1 2 a - 1 2 e - 1 2 z M 1 2 a - 1 2 , 1 2 a ( z ) incomplete-gamma 𝑎 𝑧 superscript 𝑎 1 superscript 𝑧 1 2 𝑎 1 2 superscript 𝑒 1 2 𝑧 Whittaker-confluent-hypergeometric-M 1 2 𝑎 1 2 1 2 𝑎 𝑧 {\displaystyle{\displaystyle\gamma\left(a,z\right)=a^{-1}z^{\frac{1}{2}a-\frac% {1}{2}}e^{-\frac{1}{2}z}M_{\frac{1}{2}a-\frac{1}{2},\frac{1}{2}a}\left(z\right% )}} GAMMA(a)-GAMMA(a, z)= (a)^(- 1)* (z)^((1)/(2)*a -(1)/(2))* exp(-(1)/(2)*z)*WhittakerM((1)/(2)*a -(1)/(2), (1)/(2)*a, z) Gamma[a, 0, z]= (a)^(- 1)* (z)^(Divide[1,2]*a -Divide[1,2])* Exp[-Divide[1,2]*z]*WhittakerM[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z] Successful Successful - -
8.5.E5 Γ ( a , z ) = e - 1 2 z z 1 2 a - 1 2 W 1 2 a - 1 2 , 1 2 a ( z ) incomplete-Gamma 𝑎 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 𝑎 1 2 Whittaker-confluent-hypergeometric-W 1 2 𝑎 1 2 1 2 𝑎 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=e^{-\frac{1}{2}z}z^{\frac{1% }{2}a-\frac{1}{2}}W_{\frac{1}{2}a-\frac{1}{2},\frac{1}{2}a}\left(z\right)}} GAMMA(a, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)*a -(1)/(2))* WhittakerW((1)/(2)*a -(1)/(2), (1)/(2)*a, z) Gamma[a, z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*a -Divide[1,2])* WhittakerW[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z] Successful Successful - -
8.6.E1 γ ( a , z ) = z a sin ( π a ) 0 π e z cos t cos ( a t + z sin t ) d t incomplete-gamma 𝑎 𝑧 superscript 𝑧 𝑎 𝜋 𝑎 superscript subscript 0 𝜋 superscript 𝑒 𝑧 𝑡 𝑎 𝑡 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\gamma\left(a,z\right)=\frac{z^{a}}{\sin\left(\pi a% \right)}\int_{0}^{\pi}e^{z\cos t}\cos\left(at+z\sin t\right)\mathrm{d}t}} GAMMA(a)-GAMMA(a, z)=((z)^(a))/(sin(Pi*a))*int(exp(z*cos(t))*cos(a*t + z*sin(t)), t = 0..Pi) Gamma[a, 0, z]=Divide[(z)^(a),Sin[Pi*a]]*Integrate[Exp[z*Cos[t]]*Cos[a*t + z*Sin[t]], {t, 0, Pi}] Failure Failure Skip Error
8.6.E2 γ ( a , z ) = z 1 2 a 0 e - t t 1 2 a - 1 J a ( 2 z t ) d t incomplete-gamma 𝑎 𝑧 superscript 𝑧 1 2 𝑎 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 1 2 𝑎 1 Bessel-J 𝑎 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\gamma\left(a,z\right)=z^{\frac{1}{2}a}\int_{0}^{% \infty}e^{-t}t^{\frac{1}{2}a-1}J_{a}\left(2\sqrt{zt}\right)\mathrm{d}t}} GAMMA(a)-GAMMA(a, z)= (z)^((1)/(2)*a)* int(exp(- t)*(t)^((1)/(2)*a - 1)* BesselJ(a, 2*sqrt(z*t)), t = 0..infinity) Gamma[a, 0, z]= (z)^(Divide[1,2]*a)* Integrate[Exp[- t]*(t)^(Divide[1,2]*a - 1)* BesselJ[a, 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E3 γ ( a , z ) = z a 0 exp ( - a t - z e - t ) d t incomplete-gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript subscript 0 𝑎 𝑡 𝑧 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle\gamma\left(a,z\right)=z^{a}\int_{0}^{\infty}\exp% \left(-at-ze^{-t}\right)\mathrm{d}t}} GAMMA(a)-GAMMA(a, z)= (z)^(a)* int(exp(- a*t - z*exp(- t)), t = 0..infinity) Gamma[a, 0, z]= (z)^(a)* Integrate[Exp[- a*t - z*Exp[- t]], {t, 0, Infinity}] Failure Failure Skip Successful
8.6.E4 Γ ( a , z ) = z a e - z Γ ( 1 - a ) 0 t - a e - t z + t d t incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Euler-Gamma 1 𝑎 superscript subscript 0 superscript 𝑡 𝑎 superscript 𝑒 𝑡 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\frac{z^{a}e^{-z}}{\Gamma% \left(1-a\right)}\int_{0}^{\infty}\frac{t^{-a}e^{-t}}{z+t}\mathrm{d}t}} GAMMA(a, z)=((z)^(a)* exp(- z))/(GAMMA(1 - a))*int(((t)^(- a)* exp(- t))/(z + t), t = 0..infinity) Gamma[a, z]=Divide[(z)^(a)* Exp[- z],Gamma[1 - a]]*Integrate[Divide[(t)^(- a)* Exp[- t],z + t], {t, 0, Infinity}] Failure Failure Skip Successful
8.6.E5 Γ ( a , z ) = z a e - z 0 e - z t ( 1 + t ) 1 - a d t incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 0 superscript 𝑒 𝑧 𝑡 superscript 1 𝑡 1 𝑎 𝑡 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=z^{a}e^{-z}\int_{0}^{\infty% }\frac{e^{-zt}}{(1+t)^{1-a}}\mathrm{d}t}} GAMMA(a, z)= (z)^(a)* exp(- z)*int((exp(- z*t))/((1 + t)^(1 - a)), t = 0..infinity) Gamma[a, z]= (z)^(a)* Exp[- z]*Integrate[Divide[Exp[- z*t],(1 + t)^(1 - a)], {t, 0, Infinity}] Successful Failure - Error
8.6.E6 Γ ( a , z ) = 2 z 1 2 a e - z Γ ( 1 - a ) 0 e - t t - 1 2 a K a ( 2 z t ) d t incomplete-Gamma 𝑎 𝑧 2 superscript 𝑧 1 2 𝑎 superscript 𝑒 𝑧 Euler-Gamma 1 𝑎 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 1 2 𝑎 modified-Bessel-second-kind 𝑎 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\frac{2z^{\frac{1}{2}a}e^{-% z}}{\Gamma\left(1-a\right)}\int_{0}^{\infty}e^{-t}t^{-\frac{1}{2}a}K_{a}\left(% 2\sqrt{zt}\right)\mathrm{d}t}} GAMMA(a, z)=(2*(z)^((1)/(2)*a)* exp(- z))/(GAMMA(1 - a))*int(exp(- t)*(t)^(-(1)/(2)*a)* BesselK(a, 2*sqrt(z*t)), t = 0..infinity) Gamma[a, z]=Divide[2*(z)^(Divide[1,2]*a)* Exp[- z],Gamma[1 - a]]*Integrate[Exp[- t]*(t)^(-Divide[1,2]*a)* BesselK[a, 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
8.6.E7 Γ ( a , z ) = z a 0 exp ( a t - z e t ) d t incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript subscript 0 𝑎 𝑡 𝑧 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=z^{a}\int_{0}^{\infty}\exp% \left(at-ze^{t}\right)\mathrm{d}t}} GAMMA(a, z)= (z)^(a)* int(exp(a*t - z*exp(t)), t = 0..infinity) Gamma[a, z]= (z)^(a)* Integrate[Exp[a*t - z*Exp[t]], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E8 γ ( a , z ) = - i z a 2 sin ( π a ) - 1 ( 0 + ) t a - 1 e z t d t incomplete-gamma 𝑎 𝑧 imaginary-unit superscript 𝑧 𝑎 2 𝜋 𝑎 superscript subscript 1 limit-from 0 superscript 𝑡 𝑎 1 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\gamma\left(a,z\right)=\frac{-\mathrm{i}z^{a}}{2% \sin\left(\pi a\right)}\int_{-1}^{(0+)}t^{a-1}e^{zt}\mathrm{d}t}} GAMMA(a)-GAMMA(a, z)=(- I*(z)^(a))/(2*sin(Pi*a))*int((t)^(a - 1)* exp(z*t), t = - 1..(0 +)) Gamma[a, 0, z]=Divide[- I*(z)^(a),2*Sin[Pi*a]]*Integrate[(t)^(a - 1)* Exp[z*t], {t, - 1, (0 +)}] Error Failure - Error
8.6.E9 Γ ( - a , z e + π i ) = e z e - π i a Γ ( 1 + a ) 0 t a e - z t t - 1 d t incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝑧 superscript 𝑒 𝜋 imaginary-unit 𝑎 Euler-Gamma 1 𝑎 superscript subscript 0 superscript 𝑡 𝑎 superscript 𝑒 𝑧 𝑡 𝑡 1 𝑡 {\displaystyle{\displaystyle\Gamma\left(-a,ze^{+\pi i}\right)=\frac{e^{z}e^{-% \pi\mathrm{i}a}}{\Gamma\left(1+a\right)}\int_{0}^{\infty}\frac{t^{a}e^{-zt}}{t% -1}\mathrm{d}t}} GAMMA(- a, z*exp(+ Pi*I))=(exp(z)*exp(- Pi*I*a))/(GAMMA(1 + a))*int(((t)^(a)* exp(- z*t))/(t - 1), t = 0..infinity) Gamma[- a, z*Exp[+ Pi*I]]=Divide[Exp[z]*Exp[- Pi*I*a],Gamma[1 + a]]*Integrate[Divide[(t)^(a)* Exp[- z*t],t - 1], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E9 Γ ( - a , z e - π i ) = e z e + π i a Γ ( 1 + a ) 0 t a e - z t t - 1 d t incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑒 𝑧 superscript 𝑒 𝜋 imaginary-unit 𝑎 Euler-Gamma 1 𝑎 superscript subscript 0 superscript 𝑡 𝑎 superscript 𝑒 𝑧 𝑡 𝑡 1 𝑡 {\displaystyle{\displaystyle\Gamma\left(-a,ze^{-\pi i}\right)=\frac{e^{z}e^{+% \pi\mathrm{i}a}}{\Gamma\left(1+a\right)}\int_{0}^{\infty}\frac{t^{a}e^{-zt}}{t% -1}\mathrm{d}t}} GAMMA(- a, z*exp(- Pi*I))=(exp(z)*exp(+ Pi*I*a))/(GAMMA(1 + a))*int(((t)^(a)* exp(- z*t))/(t - 1), t = 0..infinity) Gamma[- a, z*Exp[- Pi*I]]=Divide[Exp[z]*Exp[+ Pi*I*a],Gamma[1 + a]]*Integrate[Divide[(t)^(a)* Exp[- z*t],t - 1], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E10 γ ( a , z ) = 1 2 π i c - i c + i Γ ( s ) a - s z a - s d s incomplete-gamma 𝑎 𝑧 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑠 𝑎 𝑠 superscript 𝑧 𝑎 𝑠 𝑠 {\displaystyle{\displaystyle\gamma\left(a,z\right)=\frac{1}{2\pi i}\int_{c-i% \infty}^{c+i\infty}\frac{\Gamma\left(s\right)}{a-s}z^{a-s}\mathrm{d}s}} GAMMA(a)-GAMMA(a, z)=(1)/(2*Pi*I)*int((GAMMA(s))/(a - s)*(z)^(a - s), s = c - I*infinity..c + I*infinity) Gamma[a, 0, z]=Divide[1,2*Pi*I]*Integrate[Divide[Gamma[s],a - s]*(z)^(a - s), {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.6.E11 Γ ( a , z ) = 1 2 π i c - i c + i Γ ( s + a ) z - s s d s incomplete-Gamma 𝑎 𝑧 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑠 𝑎 superscript 𝑧 𝑠 𝑠 𝑠 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\frac{1}{2\pi i}\int_{c-i% \infty}^{c+i\infty}\Gamma\left(s+a\right)\frac{z^{-s}}{s}\mathrm{d}s}} GAMMA(a, z)=(1)/(2*Pi*I)*int(GAMMA(s + a)*((z)^(- s))/(s), s = c - I*infinity..c + I*infinity) Gamma[a, z]=Divide[1,2*Pi*I]*Integrate[Gamma[s + a]*Divide[(z)^(- s),s], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.6.E12 Γ ( a , z ) = - z a - 1 e - z Γ ( 1 - a ) 1 2 π i c - i c + i Γ ( s + 1 - a ) π z - s sin ( π s ) d s incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 1 superscript 𝑒 𝑧 Euler-Gamma 1 𝑎 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 Euler-Gamma 𝑠 1 𝑎 𝜋 superscript 𝑧 𝑠 𝜋 𝑠 𝑠 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=-\frac{z^{a-1}e^{-z}}{% \Gamma\left(1-a\right)}\*\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\Gamma% \left(s+1-a\right)\frac{\pi z^{-s}}{\sin\left(\pi s\right)}\mathrm{d}s}} GAMMA(a, z)= -((z)^(a - 1)* exp(- z))/(GAMMA(1 - a))*(1)/(2*Pi*I)*int(GAMMA(s + 1 - a)*(Pi*(z)^(- s))/(sin(Pi*s)), s = c - I*infinity..c + I*infinity) Gamma[a, z]= -Divide[(z)^(a - 1)* Exp[- z],Gamma[1 - a]]*Divide[1,2*Pi*I]*Integrate[Gamma[s + 1 - a]*Divide[Pi*(z)^(- s),Sin[Pi*s]], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.7.E1 γ * ( a , z ) = e - z k = 0 z k Γ ( a + k + 1 ) incomplete-gamma-star 𝑎 𝑧 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle\gamma^{*}\left(a,z\right)=e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{\Gamma\left(a+k+1\right)}}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity) Error Successful Error - -
8.7.E1 e - z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( - z ) k k ! ( a + k ) superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 1 Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 𝑎 𝑘 {\displaystyle{\displaystyle e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma\left% (a+k+1\right)}=\frac{1}{\Gamma\left(a\right)}\sum_{k=0}^{\infty}\frac{(-z)^{k}% }{k!(a+k)}}} exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)=(1)/(GAMMA(a))*sum(((- z)^(k))/(factorial(k)*(a + k)), k = 0..infinity) Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}]=Divide[1,Gamma[a]]*Sum[Divide[(- z)^(k),(k)!*(a + k)], {k, 0, Infinity}] Successful Successful - -
8.7.E3 Γ ( a , z ) = Γ ( a ) - k = 0 ( - 1 ) k z a + k k ! ( a + k ) incomplete-Gamma 𝑎 𝑧 Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 𝑎 𝑘 𝑘 𝑎 𝑘 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\Gamma\left(a\right)-\sum_{% k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}}} GAMMA(a, z)= GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity) Gamma[a, z]= Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}] Successful Successful - -
8.7.E3 Γ ( a ) - k = 0 ( - 1 ) k z a + k k ! ( a + k ) = Γ ( a ) ( 1 - z a e - z k = 0 z k Γ ( a + k + 1 ) ) Euler-Gamma 𝑎 superscript subscript 𝑘 0 superscript 1 𝑘 superscript 𝑧 𝑎 𝑘 𝑘 𝑎 𝑘 Euler-Gamma 𝑎 1 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle\Gamma\left(a\right)-\sum_{k=0}^{\infty}\frac{(-1)% ^{k}z^{a+k}}{k!(a+k)}=\Gamma\left(a\right)\left(1-z^{a}e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{\Gamma\left(a+k+1\right)}\right)}} GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity)= GAMMA(a)*(1 - (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)) Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}]= Gamma[a]*(1 - (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}]) Successful Successful - -
8.8.E1 γ ( a + 1 , z ) = a γ ( a , z ) - z a e - z incomplete-gamma 𝑎 1 𝑧 𝑎 incomplete-gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\gamma\left(a+1,z\right)=a\gamma\left(a,z\right)-z% ^{a}e^{-z}}} GAMMA(a + 1)-GAMMA(a + 1, z)= a*GAMMA(a)-GAMMA(a, z)- (z)^(a)* exp(- z) Gamma[a + 1, 0, z]= a*Gamma[a, 0, z]- (z)^(a)* Exp[- z] Failure Successful
Fail
.135004907e-1-.2375774782*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.8693672828+.710002389*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
107.1902160-63.3824277*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.1657436948-.7422690683*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.8.E2 Γ ( a + 1 , z ) = a Γ ( a , z ) + z a e - z incomplete-Gamma 𝑎 1 𝑧 𝑎 incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\Gamma\left(a+1,z\right)=a\Gamma\left(a,z\right)+z% ^{a}e^{-z}}} GAMMA(a + 1, z)= a*GAMMA(a, z)+ (z)^(a)* exp(- z) Gamma[a + 1, z]= a*Gamma[a, z]+ (z)^(a)* Exp[- z] Failure Successful Successful -
8.8.E4 z γ * ( a + 1 , z ) = γ * ( a , z ) - e - z Γ ( a + 1 ) 𝑧 incomplete-gamma-star 𝑎 1 𝑧 incomplete-gamma-star 𝑎 𝑧 superscript 𝑒 𝑧 Euler-Gamma 𝑎 1 {\displaystyle{\displaystyle z\gamma^{*}\left(a+1,z\right)=\gamma^{*}\left(a,z% \right)-\frac{e^{-z}}{\Gamma\left(a+1\right)}}} z*(z)^(-(a + 1))*(GAMMA(a + 1)-GAMMA(a + 1, z))/GAMMA(a + 1)= (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)-(exp(- z))/(GAMMA(a + 1)) Error Failure Error Successful -
8.8.E5 P ( a + 1 , z ) = P ( a , z ) - z a e - z Γ ( a + 1 ) incomplete-gamma-P 𝑎 1 𝑧 incomplete-gamma-P 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Euler-Gamma 𝑎 1 {\displaystyle{\displaystyle P\left(a+1,z\right)=P\left(a,z\right)-\frac{z^{a}% e^{-z}}{\Gamma\left(a+1\right)}}} (GAMMA(a + 1)-GAMMA(a + 1, z))/GAMMA(a + 1)= (GAMMA(a)-GAMMA(a, z))/GAMMA(a)-((z)^(a)* exp(- z))/(GAMMA(a + 1)) GammaRegularized[a + 1, 0, z]= GammaRegularized[a, 0, z]-Divide[(z)^(a)* Exp[- z],Gamma[a + 1]] Failure Successful Successful -
8.8.E6 Q ( a + 1 , z ) = Q ( a , z ) + z a e - z Γ ( a + 1 ) incomplete-gamma-Q 𝑎 1 𝑧 incomplete-gamma-Q 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 Euler-Gamma 𝑎 1 {\displaystyle{\displaystyle Q\left(a+1,z\right)=Q\left(a,z\right)+\frac{z^{a}% e^{-z}}{\Gamma\left(a+1\right)}}} GAMMA(a + 1, z)/GAMMA(a + 1)= GAMMA(a, z)/GAMMA(a)+((z)^(a)* exp(- z))/(GAMMA(a + 1)) GammaRegularized[a + 1, z]= GammaRegularized[a, z]+Divide[(z)^(a)* Exp[- z],Gamma[a + 1]] Failure Successful Successful -
8.8.E7 γ ( a + n , z ) = ( a ) n γ ( a , z ) - z a e - z k = 0 n - 1 Γ ( a + n ) Γ ( a + k + 1 ) z k incomplete-gamma 𝑎 𝑛 𝑧 Pochhammer 𝑎 𝑛 incomplete-gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 Euler-Gamma 𝑎 𝑛 Euler-Gamma 𝑎 𝑘 1 superscript 𝑧 𝑘 {\displaystyle{\displaystyle\gamma\left(a+n,z\right)={\left(a\right)_{n}}% \gamma\left(a,z\right)-z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{\Gamma\left(a+n\right)% }{\Gamma\left(a+k+1\right)}z^{k}}} GAMMA(a + n)-GAMMA(a + n, z)= pochhammer(a, n)*GAMMA(a)-GAMMA(a, z)- (z)^(a)* exp(- z)*sum((GAMMA(a + n))/(GAMMA(a + k + 1))*(z)^(k), k = 0..n - 1) Gamma[a + n, 0, z]= Pochhammer[a, n]*Gamma[a, 0, z]- (z)^(a)* Exp[- z]*Sum[Divide[Gamma[a + n],Gamma[a + k + 1]]*(z)^(k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E8 γ ( a , z ) = Γ ( a ) Γ ( a - n ) γ ( a - n , z ) - z a - 1 e - z k = 0 n - 1 Γ ( a ) Γ ( a - k ) z - k incomplete-gamma 𝑎 𝑧 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑛 incomplete-gamma 𝑎 𝑛 𝑧 superscript 𝑧 𝑎 1 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑘 superscript 𝑧 𝑘 {\displaystyle{\displaystyle\gamma\left(a,z\right)=\frac{\Gamma\left(a\right)}% {\Gamma\left(a-n\right)}\gamma\left(a-n,z\right)-z^{a-1}e^{-z}\sum_{k=0}^{n-1}% \frac{\Gamma\left(a\right)}{\Gamma\left(a-k\right)}z^{-k}}} GAMMA(a)-GAMMA(a, z)=(GAMMA(a))/(GAMMA(a - n))*GAMMA(a - n)-GAMMA(a - n, z)- (z)^(a - 1)* exp(- z)*sum((GAMMA(a))/(GAMMA(a - k))*(z)^(- k), k = 0..n - 1) Gamma[a, 0, z]=Divide[Gamma[a],Gamma[a - n]]*Gamma[a - n, 0, z]- (z)^(a - 1)* Exp[- z]*Sum[Divide[Gamma[a],Gamma[a - k]]*(z)^(- k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E9 Γ ( a + n , z ) = ( a ) n Γ ( a , z ) + z a e - z k = 0 n - 1 Γ ( a + n ) Γ ( a + k + 1 ) z k incomplete-Gamma 𝑎 𝑛 𝑧 Pochhammer 𝑎 𝑛 incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 Euler-Gamma 𝑎 𝑛 Euler-Gamma 𝑎 𝑘 1 superscript 𝑧 𝑘 {\displaystyle{\displaystyle\Gamma\left(a+n,z\right)={\left(a\right)_{n}}% \Gamma\left(a,z\right)+z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{\Gamma\left(a+n\right)% }{\Gamma\left(a+k+1\right)}z^{k}}} GAMMA(a + n, z)= pochhammer(a, n)*GAMMA(a, z)+ (z)^(a)* exp(- z)*sum((GAMMA(a + n))/(GAMMA(a + k + 1))*(z)^(k), k = 0..n - 1) Gamma[a + n, z]= Pochhammer[a, n]*Gamma[a, z]+ (z)^(a)* Exp[- z]*Sum[Divide[Gamma[a + n],Gamma[a + k + 1]]*(z)^(k), {k, 0, n - 1}] Successful Successful - -
8.8.E10 Γ ( a , z ) = Γ ( a ) Γ ( a - n ) Γ ( a - n , z ) + z a - 1 e - z k = 0 n - 1 Γ ( a ) Γ ( a - k ) z - k incomplete-Gamma 𝑎 𝑧 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑛 incomplete-Gamma 𝑎 𝑛 𝑧 superscript 𝑧 𝑎 1 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 Euler-Gamma 𝑎 Euler-Gamma 𝑎 𝑘 superscript 𝑧 𝑘 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=\frac{\Gamma\left(a\right)}% {\Gamma\left(a-n\right)}\Gamma\left(a-n,z\right)+z^{a-1}e^{-z}\sum_{k=0}^{n-1}% \frac{\Gamma\left(a\right)}{\Gamma\left(a-k\right)}z^{-k}}} GAMMA(a, z)=(GAMMA(a))/(GAMMA(a - n))*GAMMA(a - n, z)+ (z)^(a - 1)* exp(- z)*sum((GAMMA(a))/(GAMMA(a - k))*(z)^(- k), k = 0..n - 1) Gamma[a, z]=Divide[Gamma[a],Gamma[a - n]]*Gamma[a - n, z]+ (z)^(a - 1)* Exp[- z]*Sum[Divide[Gamma[a],Gamma[a - k]]*(z)^(- k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E11 P ( a + n , z ) = P ( a , z ) - z a e - z k = 0 n - 1 z k Γ ( a + k + 1 ) incomplete-gamma-P 𝑎 𝑛 𝑧 incomplete-gamma-P 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle P\left(a+n,z\right)=P\left(a,z\right)-z^{a}e^{-z}% \sum_{k=0}^{n-1}\frac{z^{k}}{\Gamma\left(a+k+1\right)}}} (GAMMA(a + n)-GAMMA(a + n, z))/GAMMA(a + n)= (GAMMA(a)-GAMMA(a, z))/GAMMA(a)- (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..n - 1) GammaRegularized[a + n, 0, z]= GammaRegularized[a, 0, z]- (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, n - 1}] Successful Successful - -
8.8.E12 Q ( a + n , z ) = Q ( a , z ) + z a e - z k = 0 n - 1 z k Γ ( a + k + 1 ) incomplete-gamma-Q 𝑎 𝑛 𝑧 incomplete-gamma-Q 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 superscript 𝑧 𝑘 Euler-Gamma 𝑎 𝑘 1 {\displaystyle{\displaystyle Q\left(a+n,z\right)=Q\left(a,z\right)+z^{a}e^{-z}% \sum_{k=0}^{n-1}\frac{z^{k}}{\Gamma\left(a+k+1\right)}}} GAMMA(a + n, z)/GAMMA(a + n)= GAMMA(a, z)/GAMMA(a)+ (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..n - 1) GammaRegularized[a + n, z]= GammaRegularized[a, z]+ (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, n - 1}] Successful Successful - -
8.8.E13 d d z γ ( a , z ) = - d d z Γ ( a , z ) derivative 𝑧 incomplete-gamma 𝑎 𝑧 derivative 𝑧 incomplete-Gamma 𝑎 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\gamma\left(a,z% \right)=-\frac{\mathrm{d}}{\mathrm{d}z}\Gamma\left(a,z\right)}} diff(GAMMA(a)-GAMMA(a, z), z)= - diff(GAMMA(a, z), z) D[Gamma[a, 0, z], z]= - D[Gamma[a, z], z] Successful Successful - -
8.8.E13 - d d z Γ ( a , z ) = z a - 1 e - z derivative 𝑧 incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 1 superscript 𝑒 𝑧 {\displaystyle{\displaystyle-\frac{\mathrm{d}}{\mathrm{d}z}\Gamma\left(a,z% \right)=z^{a-1}e^{-z}}} - diff(GAMMA(a, z), z)= (z)^(a - 1)* exp(- z) - D[Gamma[a, z], z]= (z)^(a - 1)* Exp[- z] Successful Successful - -
8.8.E15 d n d z n ( z - a γ ( a , z ) ) = ( - 1 ) n z - a - n γ ( a + n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑎 incomplete-gamma 𝑎 𝑧 superscript 1 𝑛 superscript 𝑧 𝑎 𝑛 incomplete-gamma 𝑎 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}(z^{-a}% \gamma\left(a,z\right))=(-1)^{n}z^{-a-n}\gamma\left(a+n,z\right)}} diff((z)^(- a)* GAMMA(a)-GAMMA(a, z), [z$(n)])=(- 1)^(n)* (z)^(- a - n)* GAMMA(a + n)-GAMMA(a + n, z) D[(z)^(- a)* Gamma[a, 0, z], {z, n}]=(- 1)^(n)* (z)^(- a - n)* Gamma[a + n, 0, z] Failure Failure Skip Skip
8.8.E16 d n d z n ( z - a Γ ( a , z ) ) = ( - 1 ) n z - a - n Γ ( a + n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑎 incomplete-Gamma 𝑎 𝑧 superscript 1 𝑛 superscript 𝑧 𝑎 𝑛 incomplete-Gamma 𝑎 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}(z^{-a}% \Gamma\left(a,z\right))=(-1)^{n}z^{-a-n}\Gamma\left(a+n,z\right)}} diff((z)^(- a)* GAMMA(a, z), [z$(n)])=(- 1)^(n)* (z)^(- a - n)* GAMMA(a + n, z) D[(z)^(- a)* Gamma[a, z], {z, n}]=(- 1)^(n)* (z)^(- a - n)* Gamma[a + n, z] Failure Failure Skip Skip
8.8.E17 d n d z n ( e z γ ( a , z ) ) = ( - 1 ) n ( 1 - a ) n e z γ ( a - n , z ) derivative 𝑧 𝑛 superscript 𝑒 𝑧 incomplete-gamma 𝑎 𝑧 superscript 1 𝑛 Pochhammer 1 𝑎 𝑛 superscript 𝑒 𝑧 incomplete-gamma 𝑎 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}(e^{z}% \gamma\left(a,z\right))=(-1)^{n}{\left(1-a\right)_{n}}e^{z}\gamma\left(a-n,z% \right)}} diff(exp(z)*GAMMA(a)-GAMMA(a, z), [z$(n)])=(- 1)^(n)* pochhammer(1 - a, n)*exp(z)*GAMMA(a - n)-GAMMA(a - n, z) D[Exp[z]*Gamma[a, 0, z], {z, n}]=(- 1)^(n)* Pochhammer[1 - a, n]*Exp[z]*Gamma[a - n, 0, z] Failure Failure Skip Successful
8.8.E18 d n d z n ( z a e z γ * ( a , z ) ) = z a - n e z γ * ( a - n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑎 superscript 𝑒 𝑧 incomplete-gamma-star 𝑎 𝑧 superscript 𝑧 𝑎 𝑛 superscript 𝑒 𝑧 incomplete-gamma-star 𝑎 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}(z^{a}e^% {z}\gamma^{*}\left(a,z\right))=z^{a-n}e^{z}\gamma^{*}\left(a-n,z\right)}} diff((z)^(a)* exp(z)*(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a), [z$(n)])= (z)^(a - n)* exp(z)*(z)^(-(a - n))*(GAMMA(a - n)-GAMMA(a - n, z))/GAMMA(a - n) Error Failure Error Skip -
8.8.E19 d n d z n ( e z Γ ( a , z ) ) = ( - 1 ) n ( 1 - a ) n e z Γ ( a - n , z ) derivative 𝑧 𝑛 superscript 𝑒 𝑧 incomplete-Gamma 𝑎 𝑧 superscript 1 𝑛 Pochhammer 1 𝑎 𝑛 superscript 𝑒 𝑧 incomplete-Gamma 𝑎 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}(e^{z}% \Gamma\left(a,z\right))=(-1)^{n}{\left(1-a\right)_{n}}e^{z}\Gamma\left(a-n,z% \right)}} diff(exp(z)*GAMMA(a, z), [z$(n)])=(- 1)^(n)* pochhammer(1 - a, n)*exp(z)*GAMMA(a - n, z) D[Exp[z]*Gamma[a, z], {z, n}]=(- 1)^(n)* Pochhammer[1 - a, n]*Exp[z]*Gamma[a - n, z] Failure Failure Skip Skip
8.10.E1 x 1 - a e x Γ ( a , x ) 1 superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 1 {\displaystyle{\displaystyle x^{1-a}e^{x}\Gamma\left(a,x\right)<=1}} (x)^(1 - a)* exp(x)*GAMMA(a, x)< = 1 (x)^(1 - a)* Exp[x]*Gamma[a, x]< = 1 Failure Failure Skip Successful
8.10.E2 γ ( a , x ) x a - 1 a ( 1 - e - x ) incomplete-gamma 𝑎 𝑥 superscript 𝑥 𝑎 1 𝑎 1 superscript 𝑒 𝑥 {\displaystyle{\displaystyle\gamma\left(a,x\right)>=\frac{x^{a-1}}{a}(1-e^{-x}% )}} GAMMA(a)-GAMMA(a, x)> =((x)^(a - 1))/(a)*(1 - exp(- x)) Gamma[a, 0, x]> =Divide[(x)^(a - 1),a]*(1 - Exp[- x]) Failure Failure Skip Successful
8.10.E3 x 1 - a e x Γ ( a , x ) = 1 + a - 1 x ϑ superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 1 𝑎 1 𝑥 italic-ϑ {\displaystyle{\displaystyle x^{1-a}e^{x}\Gamma\left(a,x\right)=1+\frac{a-1}{x% }\vartheta}} (x)^(1 - a)* exp(x)*GAMMA(a, x)= 1 +(a - 1)/(x)*vartheta (x)^(1 - a)* Exp[x]*Gamma[a, x]= 1 +Divide[a - 1,x]*\[CurlyTheta] Failure Failure
Fail
1.052938223-1.733408016*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 1}
.6195824495-.7346525318*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 2}
.4531580595-.4544327802*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 3}
-2.947061775-.5618351419*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.0529382235611282, -1.733408017034722] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6195824493248067, -0.7346525326366091] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.4531580595377106, -0.4544327806624232] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.947061776438873, -0.5618351417809119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[ϑ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.10.E5 A n < x 1 - a e x Γ ( a , x ) subscript 𝐴 𝑛 superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 {\displaystyle{\displaystyle A_{n}<x^{1-a}e^{x}\Gamma\left(a,x\right)}} A[n]< (x)^(1 - a)* exp(x)*GAMMA(a, x) Subscript[A, n]< (x)^(1 - a)* Exp[x]*Gamma[a, x] Failure Failure Successful Successful
8.10.E5 x 1 - a e x Γ ( a , x ) < B n superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 subscript 𝐵 𝑛 {\displaystyle{\displaystyle x^{1-a}e^{x}\Gamma\left(a,x\right)<B_{n}}} (x)^(1 - a)* exp(x)*GAMMA(a, x)< B[n] (x)^(1 - a)* Exp[x]*Gamma[a, x]< Subscript[B, n] Failure Failure Successful Successful
8.10.E7 I = 0 x t a - 1 e t d t 𝐼 superscript subscript 0 𝑥 superscript 𝑡 𝑎 1 superscript 𝑒 𝑡 𝑡 {\displaystyle{\displaystyle I=\int_{0}^{x}t^{a-1}e^{t}\mathrm{d}t}} I = int((t)^(a - 1)* exp(t), t = 0..x) I = Integrate[(t)^(a - 1)* Exp[t], {t, 0, x}] Failure Failure Skip
Fail
Complex[-2.925303491814363, 1.0] <- {Rule[a, Rational[1, 2]], Rule[x, 1]}
Complex[-6.687685525621974, 1.0000000000000002] <- {Rule[a, Rational[1, 2]], Rule[x, 2]}
Complex[-14.626171384019093, 1.0000000000000007] <- {Rule[a, Rational[1, 2]], Rule[x, 3]}
8.10.E7 0 x t a - 1 e t d t = Γ ( a ) x a γ * ( a , - x ) superscript subscript 0 𝑥 superscript 𝑡 𝑎 1 superscript 𝑒 𝑡 𝑡 Euler-Gamma 𝑎 superscript 𝑥 𝑎 incomplete-gamma-star 𝑎 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}t^{a-1}e^{t}\mathrm{d}t=\Gamma\left(a% \right)x^{a}\gamma^{*}\left(a,-x\right)}} int((t)^(a - 1)* exp(t), t = 0..x)= GAMMA(a)*(x)^(a)* (- x)^(-(a))*(GAMMA(a)-GAMMA(a, - x))/GAMMA(a) Error Failure Error Skip -
8.10#Ex5 c a = ( Γ ( 1 + a ) ) 1 / ( a - 1 ) subscript 𝑐 𝑎 superscript Euler-Gamma 1 𝑎 1 𝑎 1 {\displaystyle{\displaystyle c_{a}=(\Gamma\left(1+a\right))^{1/(a-1)}}} c[a]=(GAMMA(1 + a))^(1/(a - 1)) Subscript[c, a]=(Gamma[1 + a])^(1/(a - 1)) Failure Failure
Fail
-.342222950+.7512982152*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = 2^(1/2)+I*2^(1/2)}
-.342222950-2.077128909*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = 2^(1/2)-I*2^(1/2)}
-3.170650074-2.077128909*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = -2^(1/2)-I*2^(1/2)}
-3.170650074+.7512982152*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Successful
8.10#Ex6 d a = ( Γ ( 1 + a ) ) - 1 / a subscript 𝑑 𝑎 superscript Euler-Gamma 1 𝑎 1 𝑎 {\displaystyle{\displaystyle d_{a}=(\Gamma\left(1+a\right))^{-1/a}}} d[a]=(GAMMA(1 + a))^(- 1/ a) Subscript[d, a]=(Gamma[1 + a])^(- 1/ a) Failure Failure
Fail
.7353701374+1.747162536*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = 2^(1/2)+I*2^(1/2)}
.7353701374-1.081264588*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = 2^(1/2)-I*2^(1/2)}
-2.093056987-1.081264588*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = -2^(1/2)-I*2^(1/2)}
-2.093056987+1.747162536*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Successful
8.10.E10 x 2 a ( ( 1 + 2 x ) a - 1 ) < x 1 - a e x Γ ( a , x ) 𝑥 2 𝑎 superscript 1 2 𝑥 𝑎 1 superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 {\displaystyle{\displaystyle\frac{x}{2a}\left(\left(1+\frac{2}{x}\right)^{a}-1% \right)<x^{1-a}e^{x}\Gamma\left(a,x\right)}} (x)/(2*a)*((1 +(2)/(x))^(a)- 1)< (x)^(1 - a)* exp(x)*GAMMA(a, x) Divide[x,2*a]*((1 +Divide[2,x])^(a)- 1)< (x)^(1 - a)* Exp[x]*Gamma[a, x] Failure Failure Successful Successful
8.10.E10 x 1 - a e x Γ ( a , x ) x a c a ( ( 1 + c a x ) a - 1 ) superscript 𝑥 1 𝑎 superscript 𝑒 𝑥 incomplete-Gamma 𝑎 𝑥 𝑥 𝑎 subscript 𝑐 𝑎 superscript 1 subscript 𝑐 𝑎 𝑥 𝑎 1 {\displaystyle{\displaystyle x^{1-a}e^{x}\Gamma\left(a,x\right)<=\frac{x}{ac_{% a}}\left(\left(1+\frac{c_{a}}{x}\right)^{a}-1\right)}} (x)^(1 - a)* exp(x)*GAMMA(a, x)< =(x)/(a*c[a])*((1 +(c[a])/(x))^(a)- 1) (x)^(1 - a)* Exp[x]*Gamma[a, x]< =Divide[x,a*Subscript[c, a]]*((1 +Divide[Subscript[c, a],x])^(a)- 1) Failure Failure Successful Successful
8.10.E11 ( 1 - e - α a x ) a P ( a , x ) superscript 1 superscript 𝑒 subscript 𝛼 𝑎 𝑥 𝑎 incomplete-gamma-P 𝑎 𝑥 {\displaystyle{\displaystyle(1-e^{-\alpha_{a}x})^{a}<=P\left(a,x\right)}} (1 - exp(- alpha[a]*x))^(a)< = (GAMMA(a)-GAMMA(a, x))/GAMMA(a) (1 - Exp[- Subscript[\[Alpha], a]*x])^(a)< = GammaRegularized[a, 0, x] Failure Failure Successful Successful
8.10.E11 P ( a , x ) ( 1 - e - β a x ) a incomplete-gamma-P 𝑎 𝑥 superscript 1 superscript 𝑒 subscript 𝛽 𝑎 𝑥 𝑎 {\displaystyle{\displaystyle P\left(a,x\right)<=(1-e^{-\beta_{a}x})^{a}}} (GAMMA(a)-GAMMA(a, x))/GAMMA(a)< =(1 - exp(- beta[a]*x))^(a) GammaRegularized[a, 0, x]< =(1 - Exp[- Subscript[\[Beta], a]*x])^(a) Failure Failure Successful Successful
8.10.E13 Γ ( n , n ) Γ ( n ) < 1 2 incomplete-Gamma 𝑛 𝑛 Euler-Gamma 𝑛 1 2 {\displaystyle{\displaystyle\frac{\Gamma\left(n,n\right)}{\Gamma\left(n\right)% }<\frac{1}{2}}} (GAMMA(n, n))/(GAMMA(n))<(1)/(2) Divide[Gamma[n, n],Gamma[n]]<Divide[1,2] Failure Failure Successful Successful
8.10.E13 1 2 < Γ ( n , n - 1 ) Γ ( n ) 1 2 incomplete-Gamma 𝑛 𝑛 1 Euler-Gamma 𝑛 {\displaystyle{\displaystyle\frac{1}{2}<\frac{\Gamma\left(n,n-1\right)}{\Gamma% \left(n\right)}}} (1)/(2)<(GAMMA(n, n - 1))/(GAMMA(n)) Divide[1,2]<Divide[Gamma[n, n - 1],Gamma[n]] Failure Failure Successful Successful
8.11.E2 Γ ( a , z ) = z a - 1 e - z ( k = 0 n - 1 u k z k + R n ( a , z ) ) incomplete-Gamma 𝑎 𝑧 superscript 𝑧 𝑎 1 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 subscript 𝑢 𝑘 superscript 𝑧 𝑘 subscript 𝑅 𝑛 𝑎 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=z^{a-1}e^{-z}\left(\sum_{k=% 0}^{n-1}\frac{u_{k}}{z^{k}}+R_{n}(a,z)\right)}} GAMMA(a, z)= (z)^(a - 1)* exp(- z)*(sum((u[k])/((z)^(k)), k = 0..n - 1)+ R[n]*(a , z)) Gamma[a, z]= (z)^(a - 1)* Exp[- z]*(Sum[Divide[Subscript[u, k],(z)^(k)], {k, 0, n - 1}]+ Subscript[R, n]*(a , z)) Failure Failure Skip Error
8.11.E4 γ ( a , z ) = z a e - z k = 0 z k ( a ) k + 1 incomplete-gamma 𝑎 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Pochhammer 𝑎 𝑘 1 {\displaystyle{\displaystyle\gamma\left(a,z\right)=z^{a}e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{{\left(a\right)_{k+1}}}}} GAMMA(a)-GAMMA(a, z)= (z)^(a)* exp(- z)*sum(((z)^(k))/(pochhammer(a, k + 1)), k = 0..infinity) Gamma[a, 0, z]= (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Pochhammer[a, k + 1]], {k, 0, Infinity}] Successful Successful - -
8.11.E15 S n ( x ) = γ ( n + 1 , n x ) ( n x ) n e - n x subscript 𝑆 𝑛 𝑥 incomplete-gamma 𝑛 1 𝑛 𝑥 superscript 𝑛 𝑥 𝑛 superscript 𝑒 𝑛 𝑥 {\displaystyle{\displaystyle S_{n}(x)=\frac{\gamma\left(n+1,nx\right)}{(nx)^{n% }e^{-nx}}}} S[n]*(x)=(GAMMA(n + 1)-GAMMA(n + 1, n*x))/((n*x)^(n)* exp(- n*x)) Subscript[S, n]*(x)=Divide[Gamma[n + 1, 0, n*x],(n*x)^(n)* Exp[- n*x]] Failure Failure
Fail
.6959317335+1.414213562*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
.633899074+2.828427124*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
-1.119204955+4.242640686*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
.219685512+1.414213562*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Successful
8.12.E3 P ( a , z ) = 1 2 erfc ( - η a / 2 ) - S ( a , η ) incomplete-gamma-P 𝑎 𝑧 1 2 complementary-error-function 𝜂 𝑎 2 𝑆 𝑎 𝜂 {\displaystyle{\displaystyle P\left(a,z\right)=\tfrac{1}{2}\operatorname{erfc}% \left(-\eta\sqrt{a/2}\right)-S(a,\eta)}} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(1)/(2)*erfc(- eta*sqrt(a/ 2))- S*(a , eta) GammaRegularized[a, 0, z]=Divide[1,2]*Erfc[- \[Eta]*Sqrt[a/ 2]]- S*(a , \[Eta]) Failure Failure Error Error
8.12.E4 Q ( a , z ) = 1 2 erfc ( η a / 2 ) + S ( a , η ) incomplete-gamma-Q 𝑎 𝑧 1 2 complementary-error-function 𝜂 𝑎 2 𝑆 𝑎 𝜂 {\displaystyle{\displaystyle Q\left(a,z\right)=\tfrac{1}{2}\operatorname{erfc}% \left(\eta\sqrt{a/2}\right)+S(a,\eta)}} GAMMA(a, z)/GAMMA(a)=(1)/(2)*erfc(eta*sqrt(a/ 2))+ S*(a , eta) GammaRegularized[a, z]=Divide[1,2]*Erfc[\[Eta]*Sqrt[a/ 2]]+ S*(a , \[Eta]) Failure Failure Error Error
8.12.E5 e + π i a 2 i sin ( π a ) Q ( - a , z e + π i ) = + 1 2 erfc ( + i η a / 2 ) - i T ( a , η ) superscript 𝑒 𝜋 𝑖 𝑎 2 𝑖 𝜋 𝑎 incomplete-gamma-Q 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 1 2 complementary-error-function 𝑖 𝜂 𝑎 2 𝑖 𝑇 𝑎 𝜂 {\displaystyle{\displaystyle\frac{e^{+\pi ia}}{2i\sin\left(\pi a\right)}Q\left% (-a,ze^{+\pi i}\right)=+\tfrac{1}{2}\operatorname{erfc}\left(+i\eta\sqrt{a/2}% \right)-iT(a,\eta)}} (exp(+ Pi*I*a))/(2*I*sin(Pi*a))*GAMMA(- a, z*exp(+ Pi*I))/GAMMA(- a)= +(1)/(2)*erfc(+ I*eta*sqrt(a/ 2))- I*T*(a , eta) Divide[Exp[+ Pi*I*a],2*I*Sin[Pi*a]]*GammaRegularized[- a, z*Exp[+ Pi*I]]= +Divide[1,2]*Erfc[+ I*\[Eta]*Sqrt[a/ 2]]- I*T*(a , \[Eta]) Failure Failure Error Error
8.12.E5 e - π i a 2 i sin ( π a ) Q ( - a , z e - π i ) = - 1 2 erfc ( - i η a / 2 ) - i T ( a , η ) superscript 𝑒 𝜋 𝑖 𝑎 2 𝑖 𝜋 𝑎 incomplete-gamma-Q 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 1 2 complementary-error-function 𝑖 𝜂 𝑎 2 𝑖 𝑇 𝑎 𝜂 {\displaystyle{\displaystyle\frac{e^{-\pi ia}}{2i\sin\left(\pi a\right)}Q\left% (-a,ze^{-\pi i}\right)=-\tfrac{1}{2}\operatorname{erfc}\left(-i\eta\sqrt{a/2}% \right)-iT(a,\eta)}} (exp(- Pi*I*a))/(2*I*sin(Pi*a))*GAMMA(- a, z*exp(- Pi*I))/GAMMA(- a)= -(1)/(2)*erfc(- I*eta*sqrt(a/ 2))- I*T*(a , eta) Divide[Exp[- Pi*I*a],2*I*Sin[Pi*a]]*GammaRegularized[- a, z*Exp[- Pi*I]]= -Divide[1,2]*Erfc[- I*\[Eta]*Sqrt[a/ 2]]- I*T*(a , \[Eta]) Failure Failure Error Error
8.12#Ex5 Γ ( a + 1 ) e + π i a 2 π i Γ ( - a , z e + π i ) = - 1 2 erfc ( + i η a / 2 ) + i T ( a , η ) Euler-Gamma 𝑎 1 superscript 𝑒 𝜋 𝑖 𝑎 2 𝜋 𝑖 incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 1 2 complementary-error-function 𝑖 𝜂 𝑎 2 𝑖 𝑇 𝑎 𝜂 {\displaystyle{\displaystyle\Gamma\left(a+1\right)\frac{e^{+\pi ia}}{2\pi i}% \Gamma\left(-a,ze^{+\pi i}\right)=-\tfrac{1}{2}\operatorname{erfc}\left(+i\eta% \sqrt{a/2}\right)+iT(a,\eta)}} GAMMA(a + 1)*(exp(+ Pi*I*a))/(2*Pi*I)*GAMMA(- a, z*exp(+ Pi*I))= -(1)/(2)*erfc(+ I*eta*sqrt(a/ 2))+ I*T*(a , eta) Gamma[a + 1]*Divide[Exp[+ Pi*I*a],2*Pi*I]*Gamma[- a, z*Exp[+ Pi*I]]= -Divide[1,2]*Erfc[+ I*\[Eta]*Sqrt[a/ 2]]+ I*T*(a , \[Eta]) Failure Failure Error Error
8.12#Ex5 Γ ( a + 1 ) e - π i a 2 π i Γ ( - a , z e - π i ) = + 1 2 erfc ( - i η a / 2 ) + i T ( a , η ) Euler-Gamma 𝑎 1 superscript 𝑒 𝜋 𝑖 𝑎 2 𝜋 𝑖 incomplete-Gamma 𝑎 𝑧 superscript 𝑒 𝜋 𝑖 1 2 complementary-error-function 𝑖 𝜂 𝑎 2 𝑖 𝑇 𝑎 𝜂 {\displaystyle{\displaystyle\Gamma\left(a+1\right)\frac{e^{-\pi ia}}{2\pi i}% \Gamma\left(-a,ze^{-\pi i}\right)=+\tfrac{1}{2}\operatorname{erfc}\left(-i\eta% \sqrt{a/2}\right)+iT(a,\eta)}} GAMMA(a + 1)*(exp(- Pi*I*a))/(2*Pi*I)*GAMMA(- a, z*exp(- Pi*I))= +(1)/(2)*erfc(- I*eta*sqrt(a/ 2))+ I*T*(a , eta) Gamma[a + 1]*Divide[Exp[- Pi*I*a],2*Pi*I]*Gamma[- a, z*Exp[- Pi*I]]= +Divide[1,2]*Erfc[- I*\[Eta]*Sqrt[a/ 2]]+ I*T*(a , \[Eta]) Failure Failure Error Error
8.12.E6 z - a γ * ( - a , - z ) = cos ( π a ) - 2 sin ( π a ) ( e 1 2 a η 2 π F ( η a / 2 ) + T ( a , η ) ) superscript 𝑧 𝑎 incomplete-gamma-star 𝑎 𝑧 𝜋 𝑎 2 𝜋 𝑎 superscript 𝑒 1 2 𝑎 superscript 𝜂 2 𝜋 Dawsons-integral 𝜂 𝑎 2 𝑇 𝑎 𝜂 {\displaystyle{\displaystyle z^{-a}\gamma^{*}\left(-a,-z\right)=\cos\left(\pi a% \right)-2\sin\left(\pi a\right)\left(\frac{e^{\frac{1}{2}a\eta^{2}}}{\sqrt{\pi% }}F\left(\eta\sqrt{a/2}\right)+T(a,\eta)\right)}} (z)^(- a)* (- z)^(-(- a))*(GAMMA(- a)-GAMMA(- a, - z))/GAMMA(- a)= cos(Pi*a)- 2*sin(Pi*a)*((exp((1)/(2)*a*(eta)^(2)))/(sqrt(Pi))*dawson(eta*sqrt(a/ 2))+ T*(a , eta)) Error Failure Error Error -
8.12.E10 c k ( η ) = 1 η d d η c k - 1 ( η ) + ( - 1 ) k g k μ subscript 𝑐 𝑘 𝜂 1 𝜂 derivative 𝜂 subscript 𝑐 𝑘 1 𝜂 superscript 1 𝑘 subscript 𝑔 𝑘 𝜇 {\displaystyle{\displaystyle c_{k}(\eta)=\frac{1}{\eta}\frac{\mathrm{d}}{% \mathrm{d}\eta}c_{k-1}(\eta)+(-1)^{k}\frac{g_{k}}{\mu}}} c[k]*(eta)=(1)/(eta)*diff(c[k - 1]*(eta), eta)+(- 1)^(k)*(g[k])/(mu) Subscript[c, k]*(\[Eta])=Divide[1,\[Eta]]*D[Subscript[c, k - 1]*(\[Eta]), \[Eta]]+(- 1)^(k)*Divide[Subscript[g, k],\[Mu]] Failure Failure Skip Skip
8.12#Ex23 d ( + χ ) = 1 2 π e χ 2 / 2 erfc ( + χ / 2 ) 𝑑 𝜒 1 2 𝜋 superscript 𝑒 superscript 𝜒 2 2 complementary-error-function 𝜒 2 {\displaystyle{\displaystyle d(+\chi)=\sqrt{\tfrac{1}{2}\pi}e^{\chi^{2}/2}% \operatorname{erfc}\left(+\chi/\sqrt{2}\right)}} d*(+ chi)=sqrt((1)/(2)*Pi)*exp((chi)^(2)/ 2)*erfc(+ chi/sqrt(2)) d*(+ \[Chi])=Sqrt[Divide[1,2]*Pi]*Exp[(\[Chi])^(2)/ 2]*Erfc[+ \[Chi]/Sqrt[2]] Failure Failure
Fail
-.3819402210+4.260963736*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)+I*2^(1/2)}
3.618059777+.2609637385*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)-I*2^(1/2)}
-.3819402210-3.739036260*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)-I*2^(1/2)}
-4.381940219+.2609637385*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.3819402207134648, 4.260963738906431] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.6180597792865354, -0.26096373890643143] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.425065647600777, -6.540234379036898] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.574934352399223, 2.5402343790368977] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.12#Ex23 d ( - χ ) = 1 2 π e χ 2 / 2 erfc ( - χ / 2 ) 𝑑 𝜒 1 2 𝜋 superscript 𝑒 superscript 𝜒 2 2 complementary-error-function 𝜒 2 {\displaystyle{\displaystyle d(-\chi)=\sqrt{\tfrac{1}{2}\pi}e^{\chi^{2}/2}% \operatorname{erfc}\left(-\chi/\sqrt{2}\right)}} d*(- chi)=sqrt((1)/(2)*Pi)*exp((chi)^(2)/ 2)*erfc(- chi/sqrt(2)) d*(- \[Chi])=Sqrt[Divide[1,2]*Pi]*Exp[(\[Chi])^(2)/ 2]*Erfc[- \[Chi]/Sqrt[2]] Failure Failure
Fail
1.425065646-6.540234377*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)+I*2^(1/2)}
-2.574934352-2.540234379*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)-I*2^(1/2)}
1.425065646+1.459765619*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)-I*2^(1/2)}
5.425065644-2.540234379*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[1.425065647600777, -6.540234379036898] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.574934352399223, 2.5402343790368977] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.3819402207134648, 4.260963738906431] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.6180597792865354, -0.26096373890643143] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.12.E21 Q ( a , x ) = q incomplete-gamma-Q 𝑎 𝑥 𝑞 {\displaystyle{\displaystyle Q\left(a,x\right)=q}} GAMMA(a, x)/GAMMA(a)= q GammaRegularized[a, x]= q Failure Failure
Fail
-.6276752047-.7874152397*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 1}
-1.269609688-.9406490460*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 2}
-1.440152063-1.201678512*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 3}
-.6276752047+2.041011884*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-0.6276752046971461, -0.7874152400294763] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-1.2696096879275383, -0.9406490461902074] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-1.4401520638257446, -1.2016785120794473] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-0.6276752046971461, 2.0410118847167142] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.13.E1 1 + a - 1 < x - ( a ) 1 superscript 𝑎 1 subscript 𝑥 𝑎 {\displaystyle{\displaystyle 1+a^{-1}<x_{-}(a)}} 1 + (a)^(- 1)< x[-]*(a) 1 + (a)^(- 1)< Subscript[x, -]*(a) Error Failure - Error
8.13.E1 x - ( a ) < ln | a | subscript 𝑥 𝑎 𝑎 {\displaystyle{\displaystyle x_{-}(a)<\ln|a|}} x[-]*(a)< ln(abs(a)) Subscript[x, -]*(a)< Log[Abs[a]] Error Failure - Error
8.14.E1 0 e - a x γ ( b , x ) Γ ( b ) d x = ( 1 + a ) - b a superscript subscript 0 superscript 𝑒 𝑎 𝑥 incomplete-gamma 𝑏 𝑥 Euler-Gamma 𝑏 𝑥 superscript 1 𝑎 𝑏 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-ax}\frac{\gamma\left(b,x% \right)}{\Gamma\left(b\right)}\mathrm{d}x=\frac{(1+a)^{-b}}{a}}} int(exp(- a*x)*(GAMMA(b)-GAMMA(b, x))/(GAMMA(b)), x = 0..infinity)=((1 + a)^(- b))/(a) Integrate[Exp[- a*x]*Divide[Gamma[b, 0, x],Gamma[b]], {x, 0, Infinity}]=Divide[(1 + a)^(- b),a] Successful Failure - Error
8.14.E2 0 e - a x Γ ( b , x ) d x = Γ ( b ) 1 - ( 1 + a ) - b a superscript subscript 0 superscript 𝑒 𝑎 𝑥 incomplete-Gamma 𝑏 𝑥 𝑥 Euler-Gamma 𝑏 1 superscript 1 𝑎 𝑏 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-ax}\Gamma\left(b,x\right)% \mathrm{d}x=\Gamma\left(b\right)\frac{1-(1+a)^{-b}}{a}}} int(exp(- a*x)*GAMMA(b, x), x = 0..infinity)= GAMMA(b)*(1 -(1 + a)^(- b))/(a) Integrate[Exp[- a*x]*Gamma[b, x], {x, 0, Infinity}]= Gamma[b]*Divide[1 -(1 + a)^(- b),a] Failure Failure Skip Error
8.14.E3 0 x a - 1 γ ( b , x ) d x = - Γ ( a + b ) a superscript subscript 0 superscript 𝑥 𝑎 1 incomplete-gamma 𝑏 𝑥 𝑥 Euler-Gamma 𝑎 𝑏 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{a-1}\gamma\left(b,x\right)% \mathrm{d}x=-\frac{\Gamma\left(a+b\right)}{a}}} int((x)^(a - 1)* GAMMA(b)-GAMMA(b, x), x = 0..infinity)= -(GAMMA(a + b))/(a) Integrate[(x)^(a - 1)* Gamma[b, 0, x], {x, 0, Infinity}]= -Divide[Gamma[a + b],a] Failure Failure Skip Error
8.14.E4 0 x a - 1 Γ ( b , x ) d x = Γ ( a + b ) a superscript subscript 0 superscript 𝑥 𝑎 1 incomplete-Gamma 𝑏 𝑥 𝑥 Euler-Gamma 𝑎 𝑏 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{a-1}\Gamma\left(b,x\right)% \mathrm{d}x=\frac{\Gamma\left(a+b\right)}{a}}} int((x)^(a - 1)* GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(a) Integrate[(x)^(a - 1)* Gamma[b, x], {x, 0, Infinity}]=Divide[Gamma[a + b],a] Successful Failure - Skip
8.14.E5 0 x a - 1 e - s x γ ( b , x ) d x = Γ ( a + b ) b ( 1 + s ) a + b F ( 1 , a + b ; 1 + b ; 1 / ( 1 + s ) ) superscript subscript 0 superscript 𝑥 𝑎 1 superscript 𝑒 𝑠 𝑥 incomplete-gamma 𝑏 𝑥 𝑥 Euler-Gamma 𝑎 𝑏 𝑏 superscript 1 𝑠 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑏 1 𝑏 1 1 𝑠 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{a-1}e^{-sx}\gamma\left(b,x% \right)\mathrm{d}x=\frac{\Gamma\left(a+b\right)}{b(1+s)^{a+b}}\*F\left(1,a+b;1% +b;1/(1+s)\right)}} int((x)^(a - 1)* exp(- s*x)*GAMMA(b)-GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(b*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + b], 1/(1 + s)) Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, 0, x], {x, 0, Infinity}]=Divide[Gamma[a + b],b*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + b, 1/(1 + s)] Failure Failure Skip Error
8.14.E6 0 x a - 1 e - s x Γ ( b , x ) d x = Γ ( a + b ) a ( 1 + s ) a + b F ( 1 , a + b ; 1 + a ; s / ( 1 + s ) ) superscript subscript 0 superscript 𝑥 𝑎 1 superscript 𝑒 𝑠 𝑥 incomplete-Gamma 𝑏 𝑥 𝑥 Euler-Gamma 𝑎 𝑏 𝑎 superscript 1 𝑠 𝑎 𝑏 Gauss-hypergeometric-F 1 𝑎 𝑏 1 𝑎 𝑠 1 𝑠 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{a-1}e^{-sx}\Gamma\left(b,x% \right)\mathrm{d}x=\frac{\Gamma\left(a+b\right)}{a(1+s)^{a+b}}\*F\left(1,a+b;1% +a;s/(1+s)\right)}} int((x)^(a - 1)* exp(- s*x)*GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(a*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + a], s/(1 + s)) Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, x], {x, 0, Infinity}]=Divide[Gamma[a + b],a*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + a, s/(1 + s)] Failure Failure Skip Error
8.15.E1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 - λ ) k k ! incomplete-gamma 𝑎 𝜆 𝑥 superscript 𝜆 𝑎 superscript subscript 𝑘 0 incomplete-gamma 𝑎 𝑘 𝑥 superscript 1 𝜆 𝑘 𝑘 {\displaystyle{\displaystyle\gamma\left(a,\lambda x\right)=\lambda^{a}\sum_{k=% 0}^{\infty}\gamma\left(a+k,x\right)\frac{(1-\lambda)^{k}}{k!}}} GAMMA(a)-GAMMA(a, lambda*x)= (lambda)^(a)* sum(GAMMA(a + k)-GAMMA(a + k, x)*((1 - lambda)^(k))/(factorial(k)), k = 0..infinity) Gamma[a, 0, \[Lambda]*x]= (\[Lambda])^(a)* Sum[Gamma[a + k, 0, x]*Divide[(1 - \[Lambda])^(k),(k)!], {k, 0, Infinity}] Failure Failure Skip Skip
8.17.E1 B x ( a , b ) = 0 x t a - 1 ( 1 - t ) b - 1 d t incomplete-Beta 𝑥 𝑎 𝑏 superscript subscript 0 𝑥 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑏 1 𝑡 {\displaystyle{\displaystyle\mathrm{B}_{x}\left(a,b\right)=\int_{0}^{x}t^{a-1}% (1-t)^{b-1}\mathrm{d}t}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)= int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..x) Beta[x, a, b]= Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, x}] Successful Failure - Skip
8.17.E2 I x ( a , b ) = B x ( a , b ) / B ( a , b ) IncI 𝑥 𝑎 𝑏 incomplete-Beta 𝑥 𝑎 𝑏 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle I_{x}\left(a,b\right)=\mathrm{B}_{x}\left(a,b% \right)/\mathrm{B}\left(a,b\right)}} Error BetaRegularized[x, a, b]= Beta[x, a, b]/ Beta[a, b] Error Successful - -
8.17.E3 B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) Euler-Beta 𝑎 𝑏 Euler-Gamma 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑎 𝑏 {\displaystyle{\displaystyle\mathrm{B}\left(a,b\right)=\frac{\Gamma\left(a% \right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}}} Beta(a, b)=(GAMMA(a)*GAMMA(b))/(GAMMA(a + b)) Beta[a, b]=Divide[Gamma[a]*Gamma[b],Gamma[a + b]] Failure Successful Error -
8.17.E4 I x ( a , b ) = 1 - I 1 - x ( b , a ) IncI 𝑥 𝑎 𝑏 1 IncI 1 𝑥 𝑏 𝑎 {\displaystyle{\displaystyle I_{x}\left(a,b\right)=1-I_{1-x}\left(b,a\right)}} Error BetaRegularized[x, a, b]= 1 - BetaRegularized[1 - x, b, a] Error Failure -
Fail
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.17.E5 I x ( m , n - m + 1 ) = j = m n ( n j ) x j ( 1 - x ) n - j IncI 𝑥 𝑚 𝑛 𝑚 1 superscript subscript 𝑗 𝑚 𝑛 binomial 𝑛 𝑗 superscript 𝑥 𝑗 superscript 1 𝑥 𝑛 𝑗 {\displaystyle{\displaystyle I_{x}\left(m,n-m+1\right)=\sum_{j=m}^{n}\genfrac{% (}{)}{0.0pt}{}{n}{j}x^{j}(1-x)^{n-j}}} Error BetaRegularized[x, m, n - m + 1]= Sum[Binomial[n,j]*(x)^(j)*(1 - x)^(n - j), {j, m, n}] Error Failure - Successful
8.17.E6 I x ( a , a ) = 1 2 I 4 x ( 1 - x ) ( a , 1 2 ) IncI 𝑥 𝑎 𝑎 1 2 IncI 4 𝑥 1 𝑥 𝑎 1 2 {\displaystyle{\displaystyle I_{x}\left(a,a\right)=\tfrac{1}{2}I_{4x(1-x)}% \left(a,\tfrac{1}{2}\right)}} Error BetaRegularized[x, a, a]=Divide[1,2]*BetaRegularized[4*x*(1 - x), a, Divide[1,2]] Error Failure - Successful
8.17.E7 B x ( a , b ) = x a a F ( a , 1 - b ; a + 1 ; x ) incomplete-Beta 𝑥 𝑎 𝑏 superscript 𝑥 𝑎 𝑎 Gauss-hypergeometric-F 𝑎 1 𝑏 𝑎 1 𝑥 {\displaystyle{\displaystyle\mathrm{B}_{x}\left(a,b\right)=\frac{x^{a}}{a}F% \left(a,1-b;a+1;x\right)}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a))/(a)*hypergeom([a, 1 - b], [a + 1], x) Beta[x, a, b]=Divide[(x)^(a),a]*Hypergeometric2F1[a, 1 - b, a + 1, x] Failure Successful Skip -
8.17.E8 B x ( a , b ) = x a ( 1 - x ) b a F ( a + b , 1 ; a + 1 ; x ) incomplete-Beta 𝑥 𝑎 𝑏 superscript 𝑥 𝑎 superscript 1 𝑥 𝑏 𝑎 Gauss-hypergeometric-F 𝑎 𝑏 1 𝑎 1 𝑥 {\displaystyle{\displaystyle\mathrm{B}_{x}\left(a,b\right)=\frac{x^{a}(1-x)^{b% }}{a}F\left(a+b,1;a+1;x\right)}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a)*(1 - x)^(b))/(a)*hypergeom([a + b, 1], [a + 1], x) Beta[x, a, b]=Divide[(x)^(a)*(1 - x)^(b),a]*Hypergeometric2F1[a + b, 1, a + 1, x] Failure Successful Skip -
8.17.E9 B x ( a , b ) = x a ( 1 - x ) b - 1 a F ( 1 , 1 - b a + 1 ; x x - 1 ) incomplete-Beta 𝑥 𝑎 𝑏 superscript 𝑥 𝑎 superscript 1 𝑥 𝑏 1 𝑎 Gauss-hypergeometric-F 1 1 𝑏 𝑎 1 𝑥 𝑥 1 {\displaystyle{\displaystyle\mathrm{B}_{x}\left(a,b\right)=\frac{x^{a}(1-x)^{b% -1}}{a}F\left({1,1-b\atop a+1};\frac{x}{x-1}\right)}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a)*(1 - x)^(b - 1))/(a)*hypergeom([1, 1 - b], [a + 1], (x)/(x - 1)) Beta[x, a, b]=Divide[(x)^(a)*(1 - x)^(b - 1),a]*Hypergeometric2F1[1, 1 - b, a + 1, Divide[x,x - 1]] Failure Failure Skip
Fail
Complex[-0.27132901967319506, -0.2500814455005845] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-0.27137899275582306, -0.250091870275464] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.27137899275582306, -0.250091870275464] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[0.08838841600311584, 0.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.17.E10 I x ( a , b ) = x a ( 1 - x ) b 2 π i c - i c + i s - a ( 1 - s ) - b d s s - x IncI 𝑥 𝑎 𝑏 superscript 𝑥 𝑎 superscript 1 𝑥 𝑏 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 superscript 𝑠 𝑎 superscript 1 𝑠 𝑏 𝑠 𝑠 𝑥 {\displaystyle{\displaystyle I_{x}\left(a,b\right)=\frac{x^{a}(1-x)^{b}}{2\pi i% }\int_{c-i\infty}^{c+i\infty}s^{-a}(1-s)^{-b}\frac{\mathrm{d}s}{s-x}}} Error BetaRegularized[x, a, b]=Divide[(x)^(a)*(1 - x)^(b),2*Pi*I]*Integrate[(s)^(- a)*(1 - s)^(- b)*Divide[1,s - x], {s, c - I*Infinity, c + I*Infinity}] Error Failure - Error
8.17.E13 ( a + b ) I x ( a , b ) = a I x ( a + 1 , b ) + b I x ( a , b + 1 ) 𝑎 𝑏 IncI 𝑥 𝑎 𝑏 𝑎 IncI 𝑥 𝑎 1 𝑏 𝑏 IncI 𝑥 𝑎 𝑏 1 {\displaystyle{\displaystyle(a+b)I_{x}\left(a,b\right)=aI_{x}\left(a+1,b\right% )+bI_{x}\left(a,b+1\right)}} Error (a + b)* BetaRegularized[x, a, b]= a*BetaRegularized[x, a + 1, b]+ b*BetaRegularized[x, a, b + 1] Error Successful - -
8.17.E14 ( a + b x ) I x ( a , b ) = x b I x ( a - 1 , b + 1 ) + a I x ( a + 1 , b ) 𝑎 𝑏 𝑥 IncI 𝑥 𝑎 𝑏 𝑥 𝑏 IncI 𝑥 𝑎 1 𝑏 1 𝑎 IncI 𝑥 𝑎 1 𝑏 {\displaystyle{\displaystyle(a+bx)I_{x}\left(a,b\right)=xbI_{x}\left(a-1,b+1% \right)+aI_{x}\left(a+1,b\right)}} Error (a + b*x)* BetaRegularized[x, a, b]= x*b*BetaRegularized[x, a - 1, b + 1]+ a*BetaRegularized[x, a + 1, b] Error Successful - -
8.17.E16 a I x ( a + 1 , b ) = ( a + c x ) I x ( a , b ) - c x I x ( a - 1 , b ) 𝑎 IncI 𝑥 𝑎 1 𝑏 𝑎 𝑐 𝑥 IncI 𝑥 𝑎 𝑏 𝑐 𝑥 IncI 𝑥 𝑎 1 𝑏 {\displaystyle{\displaystyle aI_{x}\left(a+1,b\right)=(a+cx)I_{x}\left(a,b% \right)-cxI_{x}\left(a-1,b\right)}} Error a*BetaRegularized[x, a + 1, b]=(a + c*x)* BetaRegularized[x, a, b]- c*x*BetaRegularized[x, a - 1, b] Error Failure - Skip
8.17.E24 I x ( m , n ) = ( 1 - x ) n j = m ( n + j - 1 j ) x j IncI 𝑥 𝑚 𝑛 superscript 1 𝑥 𝑛 superscript subscript 𝑗 𝑚 binomial 𝑛 𝑗 1 𝑗 superscript 𝑥 𝑗 {\displaystyle{\displaystyle I_{x}\left(m,n\right)=(1-x)^{n}\sum_{j=m}^{\infty% }\genfrac{(}{)}{0.0pt}{}{n+j-1}{j}x^{j}}} Error BetaRegularized[x, m, n]=(1 - x)^(n)* Sum[Binomial[n + j - 1,j]*(x)^(j), {j, m, Infinity}] Error Failure - Successful
8.18.E2 ξ = - ln x 𝜉 𝑥 {\displaystyle{\displaystyle\xi=-\ln x}} xi = - ln(x) \[Xi]= - Log[x] Failure Failure
Fail
1.414213562+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
2.107360743+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
2.512825851+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
1.414213562-1.414213562*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.1073607429330403, 1.4142135623730951] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.512825851041205, 1.4142135623730951] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.18#Ex1 F 0 = a - b Q ( b , a ξ ) subscript 𝐹 0 superscript 𝑎 𝑏 incomplete-gamma-Q 𝑏 𝑎 𝜉 {\displaystyle{\displaystyle F_{0}=a^{-b}Q\left(b,a\xi\right)}} F[0]= (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b) Subscript[F, 0]= (a)^(- b)* GammaRegularized[b, a*\[Xi]] Failure Failure
Fail
2.106630597+.9392389431*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = 2^(1/2)+I*2^(1/2)}
2.106630597-1.889188181*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = 2^(1/2)-I*2^(1/2)}
-.7217965272-1.889188181*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = -2^(1/2)-I*2^(1/2)}
-.7217965272+.9392389431*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
8.18#Ex2 F 1 = b - a ξ a F 0 + ξ b e - a ξ a Γ ( b ) subscript 𝐹 1 𝑏 𝑎 𝜉 𝑎 subscript 𝐹 0 superscript 𝜉 𝑏 superscript 𝑒 𝑎 𝜉 𝑎 Euler-Gamma 𝑏 {\displaystyle{\displaystyle F_{1}=\frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi% }}{a\Gamma\left(b\right)}}} F[1]=(b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b)) Subscript[F, 1]=Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[(\[Xi])^(b)* Exp[- a*\[Xi]],a*Gamma[b]] Failure Failure Skip Skip
8.18.E10 - 1 2 η 2 = x 0 ln ( x x 0 ) + ( 1 - x 0 ) ln ( 1 - x 1 - x 0 ) 1 2 superscript 𝜂 2 subscript 𝑥 0 𝑥 subscript 𝑥 0 1 subscript 𝑥 0 1 𝑥 1 subscript 𝑥 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\eta^{2}=x_{0}\ln\left(\frac{x}{x_{0}% }\right)+(1-x_{0})\ln\left(\frac{1-x}{1-x_{0}}\right)}} -(1)/(2)*(eta)^(2)= x[0]*ln((x)/(x[0]))+(1 - x[0])* ln((1 - x)/(1 - x[0])) -Divide[1,2]*(\[Eta])^(2)= Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])* Log[Divide[1 - x,1 - Subscript[x, 0]]] Failure Failure
Fail
Float(undefined)-Float(infinity)*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 1}
.547175857-1.970232147*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 2}
.260872566-1.563388258*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 3}
Float(undefined)+Float(infinity)*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
8.18.E15 μ ln ζ - ζ = ln x + μ ln ( 1 - x ) + ( 1 + μ ) ln ( 1 + μ ) - μ 𝜇 𝜁 𝜁 𝑥 𝜇 1 𝑥 1 𝜇 1 𝜇 𝜇 {\displaystyle{\displaystyle\mu\ln\zeta-\zeta=\ln x+\mu\ln\left(1-x\right)+(1+% \mu)\ln\left(1+\mu\right)-\mu}} mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)* ln(1 + mu)- mu \[Mu]*Log[\[zeta]]- \[zeta]= Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])* Log[1 + \[Mu]]- \[Mu] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
1.884730882-5.086259752*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
.499007630-6.066517895*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
8.18.E18 I x ( a , b ) = p IncI 𝑥 𝑎 𝑏 𝑝 {\displaystyle{\displaystyle I_{x}\left(a,b\right)=p}} Error BetaRegularized[x, a, b]= p Error Failure - Successful
8.19.E1 E p ( z ) = z p - 1 Γ ( 1 - p , z ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\Gamma\left(1-p,z% \right)}} Ei(p, z)= (z)^(p - 1)* GAMMA(1 - p, z) ExpIntegralE[p, z]= (z)^(p - 1)* Gamma[1 - p, z] Successful Successful - -
8.19.E2 E p ( z ) = z p - 1 z e - t t p d t exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript subscript 𝑧 superscript 𝑒 𝑡 superscript 𝑡 𝑝 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\int_{z}^{\infty}\frac% {e^{-t}}{t^{p}}\mathrm{d}t}} Ei(p, z)= (z)^(p - 1)* int((exp(- t))/((t)^(p)), t = z..infinity) ExpIntegralE[p, z]= (z)^(p - 1)* Integrate[Divide[Exp[- t],(t)^(p)], {t, z, Infinity}] Successful Failure - Skip
8.19.E3 E p ( z ) = 1 e - z t t p d t exponential-integral-En 𝑝 𝑧 superscript subscript 1 superscript 𝑒 𝑧 𝑡 superscript 𝑡 𝑝 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=\int_{1}^{\infty}\frac{e^{-zt% }}{t^{p}}\mathrm{d}t}} Ei(p, z)= int((exp(- z*t))/((t)^(p)), t = 1..infinity) ExpIntegralE[p, z]= Integrate[Divide[Exp[- z*t],(t)^(p)], {t, 1, Infinity}] Successful Failure - Error
8.19.E4 E p ( z ) = z p - 1 e - z Γ ( p ) 0 t p - 1 e - z t 1 + t d t exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 Euler-Gamma 𝑝 superscript subscript 0 superscript 𝑡 𝑝 1 superscript 𝑒 𝑧 𝑡 1 𝑡 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=\frac{z^{p-1}e^{-z}}{\Gamma% \left(p\right)}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\mathrm{d}t}} Ei(p, z)=((z)^(p - 1)* exp(- z))/(GAMMA(p))*int(((t)^(p - 1)* exp(- z*t))/(1 + t), t = 0..infinity) ExpIntegralE[p, z]=Divide[(z)^(p - 1)* Exp[- z],Gamma[p]]*Integrate[Divide[(t)^(p - 1)* Exp[- z*t],1 + t], {t, 0, Infinity}] Successful Failure - Error
8.19.E5 E 0 ( z ) = z - 1 e - z exponential-integral-En 0 𝑧 superscript 𝑧 1 superscript 𝑒 𝑧 {\displaystyle{\displaystyle E_{0}\left(z\right)=z^{-1}e^{-z}}} Ei(0, z)= (z)^(- 1)* exp(- z) ExpIntegralE[0, z]= (z)^(- 1)* Exp[- z] Successful Failure - Successful
8.19.E6 E p ( 0 ) = 1 p - 1 exponential-integral-En 𝑝 0 1 𝑝 1 {\displaystyle{\displaystyle E_{p}\left(0\right)=\frac{1}{p-1}}} Ei(p, 0)=(1)/(p - 1) ExpIntegralE[p, 0]=Divide[1,p - 1] Successful Successful - -
8.19.E7 E n ( z ) = ( - z ) n - 1 ( n - 1 ) ! E 1 ( z ) + e - z ( n - 1 ) ! k = 0 n - 2 ( n - k - 2 ) ! ( - z ) k exponential-integral-En 𝑛 𝑧 superscript 𝑧 𝑛 1 𝑛 1 exponential-integral 𝑧 superscript 𝑒 𝑧 𝑛 1 superscript subscript 𝑘 0 𝑛 2 𝑛 𝑘 2 superscript 𝑧 𝑘 {\displaystyle{\displaystyle E_{n}\left(z\right)=\frac{(-z)^{n-1}}{(n-1)!}E_{1% }\left(z\right)+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}}} Ei(n, z)=((- z)^(n - 1))/(factorial(n - 1))*Ei(z)+(exp(- z))/(factorial(n - 1))*sum(factorial(n - k - 2)*(- z)^(k), k = 0..n - 2) ExpIntegralE[n, z]=Divide[(- z)^(n - 1),(n - 1)!]*-ExpIntegralEi[-(z)]+Divide[Exp[- z],(n - 1)!]*Sum[(n - k - 2)!*(- z)^(k), {k, 0, n - 2}] Failure Failure Skip
Fail
Complex[0.0, -3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.442882938158367, 4.442882938158366] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[6.283185307179586, 0.0] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.19.E9 E n ( z ) = ( - 1 ) n z n - 1 ( n - 1 ) ! ln z + e - z ( n - 1 ) ! k = 1 n - 1 ( - z ) k - 1 Γ ( n - k ) + e - z ( - z ) n - 1 ( n - 1 ) ! k = 0 z k k ! ψ ( k + 1 ) exponential-integral-En 𝑛 𝑧 superscript 1 𝑛 superscript 𝑧 𝑛 1 𝑛 1 𝑧 superscript 𝑒 𝑧 𝑛 1 superscript subscript 𝑘 1 𝑛 1 superscript 𝑧 𝑘 1 Euler-Gamma 𝑛 𝑘 superscript 𝑒 𝑧 superscript 𝑧 𝑛 1 𝑛 1 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 digamma 𝑘 1 {\displaystyle{\displaystyle E_{n}\left(z\right)=\frac{(-1)^{n}z^{n-1}}{(n-1)!% }\ln z+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\Gamma\left(n-k\right)+% \frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\psi\left(k+% 1\right)}} Ei(n, z)=((- 1)^(n)* (z)^(n - 1))/(factorial(n - 1))*ln(z)+(exp(- z))/(factorial(n - 1))*sum((- z)^(k - 1)* GAMMA(n - k), k = 1..n - 1)+(exp(- z)*(- z)^(n - 1))/(factorial(n - 1))*sum(((z)^(k))/(factorial(k))*Psi(k + 1), k = 0..infinity) ExpIntegralE[n, z]=Divide[(- 1)^(n)* (z)^(n - 1),(n - 1)!]*Log[z]+Divide[Exp[- z],(n - 1)!]*Sum[(- z)^(k - 1)* Gamma[n - k], {k, 1, n - 1}]+Divide[Exp[- z]*(- z)^(n - 1),(n - 1)!]*Sum[Divide[(z)^(k),(k)!]*PolyGamma[k + 1], {k, 0, Infinity}] Error Failure - Successful
8.19.E10 E p ( z ) = z p - 1 Γ ( 1 - p ) - k = 0 ( - z ) k k ! ( 1 - p + k ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 Euler-Gamma 1 𝑝 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 1 𝑝 𝑘 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\Gamma\left(1-p\right)% -\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}}} Ei(p, z)= (z)^(p - 1)* GAMMA(1 - p)- sum(((- z)^(k))/(factorial(k)*(1 - p + k)), k = 0..infinity) ExpIntegralE[p, z]= (z)^(p - 1)* Gamma[1 - p]- Sum[Divide[(- z)^(k),(k)!*(1 - p + k)], {k, 0, Infinity}] Successful Successful - -
8.19.E11 E p ( z ) = Γ ( 1 - p ) ( z p - 1 - e - z k = 0 z k Γ ( 2 - p + k ) ) exponential-integral-En 𝑝 𝑧 Euler-Gamma 1 𝑝 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 2 𝑝 𝑘 {\displaystyle{\displaystyle E_{p}\left(z\right)=\Gamma\left(1-p\right)\left(z% ^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma\left(2-p+k\right)}\right)}} Ei(p, z)= GAMMA(1 - p)*((z)^(p - 1)- exp(- z)*sum(((z)^(k))/(GAMMA(2 - p + k)), k = 0..infinity)) ExpIntegralE[p, z]= Gamma[1 - p]*((z)^(p - 1)- Exp[- z]*Sum[Divide[(z)^(k),Gamma[2 - p + k]], {k, 0, Infinity}]) Successful Successful - -
8.19.E12 p E p + 1 ( z ) + z E p ( z ) = e - z 𝑝 exponential-integral-En 𝑝 1 𝑧 𝑧 exponential-integral-En 𝑝 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle pE_{p+1}\left(z\right)+zE_{p}\left(z\right)=e^{-z% }}} p*Ei(p + 1, z)+ z*Ei(p, z)= exp(- z) p*ExpIntegralE[p + 1, z]+ z*ExpIntegralE[p, z]= Exp[- z] Successful Successful - -
8.19.E13 d d z E p ( z ) = - E p - 1 ( z ) derivative 𝑧 exponential-integral-En 𝑝 𝑧 exponential-integral-En 𝑝 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}E_{p}\left(z\right)=% -E_{p-1}\left(z\right)}} diff(Ei(p, z), z)= - Ei(p - 1, z) D[ExpIntegralE[p, z], z]= - ExpIntegralE[p - 1, z] Successful Successful - -
8.19.E14 d d z ( e z E p ( z ) ) = e z E p ( z ) ( 1 + p - 1 z ) - 1 z derivative 𝑧 superscript 𝑒 𝑧 exponential-integral-En 𝑝 𝑧 superscript 𝑒 𝑧 exponential-integral-En 𝑝 𝑧 1 𝑝 1 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}(e^{z}E_{p}\left(z% \right))=e^{z}E_{p}\left(z\right)\left(1+\frac{p-1}{z}\right)-\frac{1}{z}}} diff(exp(z)*Ei(p, z), z)= exp(z)*Ei(p, z)*(1 +(p - 1)/(z))-(1)/(z) D[Exp[z]*ExpIntegralE[p, z], z]= Exp[z]*ExpIntegralE[p, z]*(1 +Divide[p - 1,z])-Divide[1,z] Successful Successful - -
8.19.E15 j E p ( z ) p j = ( - 1 ) j 1 ( ln t ) j t - p e - z t d t partial-derivative exponential-integral-En 𝑝 𝑧 𝑝 𝑗 superscript 1 𝑗 superscript subscript 1 superscript 𝑡 𝑗 superscript 𝑡 𝑝 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{{\partial}^{j}E_{p}\left(z\right)}{{\partial p% }^{j}}=(-1)^{j}\int_{1}^{\infty}(\ln t)^{j}t^{-p}e^{-zt}\mathrm{d}t}} diff(Ei(p, z), [p$(j)])=(- 1)^(j)* int((ln(t))^(j)* (t)^(- p)* exp(- z*t), t = 1..infinity) D[ExpIntegralE[p, z], {p, j}]=(- 1)^(j)* Integrate[(Log[t])^(j)* (t)^(- p)* Exp[- z*t], {t, 1, Infinity}] Failure Failure Skip Error
8.19.E16 E p ( z ) = z p - 1 e - z U ( p , p , z ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑝 𝑝 𝑧 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}e^{-z}U\left(p,p,z% \right)}} Ei(p, z)= (z)^(p - 1)* exp(- z)*KummerU(p, p, z) ExpIntegralE[p, z]= (z)^(p - 1)* Exp[- z]*HypergeometricU[p, p, z] Successful Successful - -
8.19.E19 n - 1 n E n ( x ) < E n + 1 ( x ) 𝑛 1 𝑛 exponential-integral-En 𝑛 𝑥 exponential-integral-En 𝑛 1 𝑥 {\displaystyle{\displaystyle\frac{n-1}{n}E_{n}\left(x\right)<E_{n+1}\left(x% \right)}} (n - 1)/(n)*Ei(n, x)< Ei(n + 1, x) Divide[n - 1,n]*ExpIntegralE[n, x]< ExpIntegralE[n + 1, x] Failure Failure Successful Successful
8.19.E19 E n + 1 ( x ) < E n ( x ) exponential-integral-En 𝑛 1 𝑥 exponential-integral-En 𝑛 𝑥 {\displaystyle{\displaystyle E_{n+1}\left(x\right)<E_{n}\left(x\right)}} Ei(n + 1, x)< Ei(n, x) ExpIntegralE[n + 1, x]< ExpIntegralE[n, x] Failure Failure Successful Successful
8.19.E20 ( E n ( x ) ) 2 < E n - 1 ( x ) E n + 1 ( x ) superscript exponential-integral-En 𝑛 𝑥 2 exponential-integral-En 𝑛 1 𝑥 exponential-integral-En 𝑛 1 𝑥 {\displaystyle{\displaystyle\left(E_{n}\left(x\right)\right)^{2}<E_{n-1}\left(% x\right)E_{n+1}\left(x\right)}} (Ei(n, x))^(2)< Ei(n - 1, x)*Ei(n + 1, x) (ExpIntegralE[n, x])^(2)< ExpIntegralE[n - 1, x]*ExpIntegralE[n + 1, x] Failure Failure Successful Successful
8.19.E21 1 x + n < e x E n ( x ) 1 𝑥 𝑛 superscript 𝑒 𝑥 exponential-integral-En 𝑛 𝑥 {\displaystyle{\displaystyle\frac{1}{x+n}<e^{x}E_{n}\left(x\right)}} (1)/(x + n)< exp(x)*Ei(n, x) Divide[1,x + n]< Exp[x]*ExpIntegralE[n, x] Failure Failure Successful Successful
8.19.E21 e x E n ( x ) 1 x + n - 1 superscript 𝑒 𝑥 exponential-integral-En 𝑛 𝑥 1 𝑥 𝑛 1 {\displaystyle{\displaystyle e^{x}E_{n}\left(x\right)<=\frac{1}{x+n-1}}} exp(x)*Ei(n, x)< =(1)/(x + n - 1) Exp[x]*ExpIntegralE[n, x]< =Divide[1,x + n - 1] Failure Failure Successful Successful
8.19.E22 d d x E n ( x ) E n - 1 ( x ) > 0 derivative 𝑥 exponential-integral-En 𝑛 𝑥 exponential-integral-En 𝑛 1 𝑥 0 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\frac{E_{n}\left(x% \right)}{E_{n-1}\left(x\right)}>0}} diff((Ei(n, x))/(Ei(n - 1, x)), x)> 0 D[Divide[ExpIntegralE[n, x],ExpIntegralE[n - 1, x]], x]> 0 Failure Failure Successful Successful
8.19.E23 z E p - 1 ( t ) d t = E p ( z ) superscript subscript 𝑧 exponential-integral-En 𝑝 1 𝑡 𝑡 exponential-integral-En 𝑝 𝑧 {\displaystyle{\displaystyle\int_{z}^{\infty}E_{p-1}\left(t\right)\mathrm{d}t=% E_{p}\left(z\right)}} int(Ei(p - 1, t), t = z..infinity)= Ei(p, z) Integrate[ExpIntegralE[p - 1, t], {t, z, Infinity}]= ExpIntegralE[p, z] Failure Failure Skip Successful
8.19.E24 0 e - a t E n ( t ) d t = ( - 1 ) n - 1 a n ( ln ( 1 + a ) + k = 1 n - 1 ( - 1 ) k a k k ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 exponential-integral-En 𝑛 𝑡 𝑡 superscript 1 𝑛 1 superscript 𝑎 𝑛 1 𝑎 superscript subscript 𝑘 1 𝑛 1 superscript 1 𝑘 superscript 𝑎 𝑘 𝑘 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}E_{n}\left(t\right)\mathrm% {d}t=\frac{(-1)^{n-1}}{a^{n}}\left(\ln\left(1+a\right)+\sum_{k=1}^{n-1}\frac{(% -1)^{k}a^{k}}{k}\right)}} int(exp(- a*t)*Ei(n, t), t = 0..infinity)=((- 1)^(n - 1))/((a)^(n))*(ln(1 + a)+ sum(((- 1)^(k)* (a)^(k))/(k), k = 1..n - 1)) Integrate[Exp[- a*t]*ExpIntegralE[n, t], {t, 0, Infinity}]=Divide[(- 1)^(n - 1),(a)^(n)]*(Log[1 + a]+ Sum[Divide[(- 1)^(k)* (a)^(k),k], {k, 1, n - 1}]) Failure Failure Skip Successful
8.19.E25 0 e - a t t b - 1 E p ( t ) d t = Γ ( b ) ( 1 + a ) - b p + b - 1 F ( 1 , b ; p + b ; a / ( 1 + a ) ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 superscript 𝑡 𝑏 1 exponential-integral-En 𝑝 𝑡 𝑡 Euler-Gamma 𝑏 superscript 1 𝑎 𝑏 𝑝 𝑏 1 Gauss-hypergeometric-F 1 𝑏 𝑝 𝑏 𝑎 1 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}t^{b-1}E_{p}\left(t\right)% \mathrm{d}t=\frac{\Gamma\left(b\right)(1+a)^{-b}}{p+b-1}\*F\left(1,b;p+b;a/(1+% a)\right)}} int(exp(- a*t)*(t)^(b - 1)* Ei(p, t), t = 0..infinity)=(GAMMA(b)*(1 + a)^(- b))/(p + b - 1)* hypergeom([1, b], [p + b], a/(1 + a)) Integrate[Exp[- a*t]*(t)^(b - 1)* ExpIntegralE[p, t], {t, 0, Infinity}]=Divide[Gamma[b]*(1 + a)^(- b),p + b - 1]* Hypergeometric2F1[1, b, p + b, a/(1 + a)] Failure Failure Skip Error
8.19.E26 0 E p ( t ) E q ( t ) d t = L ( p ) + L ( q ) p + q - 1 superscript subscript 0 exponential-integral-En 𝑝 𝑡 exponential-integral-En 𝑞 𝑡 𝑡 𝐿 𝑝 𝐿 𝑞 𝑝 𝑞 1 {\displaystyle{\displaystyle\int_{0}^{\infty}E_{p}\left(t\right)E_{q}\left(t% \right)\mathrm{d}t=\frac{L(p)+L(q)}{p+q-1}}} int(Ei(p, t)*Ei(q, t), t = 0..infinity)=(L*(p)+ L*(q))/(p + q - 1) Integrate[ExpIntegralE[p, t]*ExpIntegralE[q, t], {t, 0, Infinity}]=Divide[L*(p)+ L*(q),p + q - 1] Failure Failure Skip
Fail
Complex[-1.9874359859908697, -2.1876726427121085] <- {Rule[L, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, -2.1876726427121085] <- {Rule[L, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, 2.1876726427121085] <- {Rule[L, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, 2.1876726427121085] <- {Rule[L, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.19.E27 L ( p ) = 0 e - t E p ( t ) d t 𝐿 𝑝 superscript subscript 0 superscript 𝑒 𝑡 exponential-integral-En 𝑝 𝑡 𝑡 {\displaystyle{\displaystyle L(p)=\int_{0}^{\infty}e^{-t}E_{p}\left(t\right)% \mathrm{d}t}} L*(p)= int(exp(- t)*Ei(p, t), t = 0..infinity) L*(p)= Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}] Failure Failure Skip Skip
8.19.E27 0 e - t E p ( t ) d t = 1 2 p F ( 1 , 1 ; 1 + p ; 1 2 ) superscript subscript 0 superscript 𝑒 𝑡 exponential-integral-En 𝑝 𝑡 𝑡 1 2 𝑝 Gauss-hypergeometric-F 1 1 1 𝑝 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}E_{p}\left(t\right)\mathrm{% d}t=\frac{1}{2p}F\left(1,1;1+p;\tfrac{1}{2}\right)}} int(exp(- t)*Ei(p, t), t = 0..infinity)=(1)/(2*p)*hypergeom([1, 1], [1 + p], (1)/(2)) Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}]=Divide[1,2*p]*Hypergeometric2F1[1, 1, 1 + p, Divide[1,2]] Failure Failure Skip Skip
8.20.E1 E p ( z ) = e - z z ( k = 0 n - 1 ( - 1 ) k ( p ) k z k + ( - 1 ) n ( p ) n e z z n - 1 E n + p ( z ) ) exponential-integral-En 𝑝 𝑧 superscript 𝑒 𝑧 𝑧 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 Pochhammer 𝑝 𝑘 superscript 𝑧 𝑘 superscript 1 𝑛 Pochhammer 𝑝 𝑛 superscript 𝑒 𝑧 superscript 𝑧 𝑛 1 exponential-integral-En 𝑛 𝑝 𝑧 {\displaystyle{\displaystyle E_{p}\left(z\right)=\frac{e^{-z}}{z}\left(\sum_{k% =0}^{n-1}(-1)^{k}\frac{{\left(p\right)_{k}}}{z^{k}}+(-1)^{n}\frac{{\left(p% \right)_{n}}e^{z}}{z^{n-1}}E_{n+p}\left(z\right)\right)}} Ei(p, z)=(exp(- z))/(z)*(sum((- 1)^(k)*(pochhammer(p, k))/((z)^(k)), k = 0..n - 1)+(- 1)^(n)*(pochhammer(p, n)*exp(z))/((z)^(n - 1))*Ei(n + p, z)) ExpIntegralE[p, z]=Divide[Exp[- z],z]*(Sum[(- 1)^(k)*Divide[Pochhammer[p, k],(z)^(k)], {k, 0, n - 1}]+(- 1)^(n)*Divide[Pochhammer[p, n]*Exp[z],(z)^(n - 1)]*ExpIntegralE[n + p, z]) Failure Successful Skip -
8.20.E4 A k + 1 ( λ ) = ( 1 - 2 k λ ) A k ( λ ) + λ ( λ + 1 ) d A k ( λ ) d λ subscript 𝐴 𝑘 1 𝜆 1 2 𝑘 𝜆 subscript 𝐴 𝑘 𝜆 𝜆 𝜆 1 derivative subscript 𝐴 𝑘 𝜆 𝜆 {\displaystyle{\displaystyle A_{k+1}(\lambda)=(1-2k\lambda)A_{k}(\lambda)+% \lambda(\lambda+1)\frac{\mathrm{d}A_{k}(\lambda)}{\mathrm{d}\lambda}}} A[k + 1]*(lambda)=(1 - 2*k*lambda)* A[k]*(lambda)+ lambda*(lambda + 1)* diff(A[k]*(lambda), lambda) Subscript[A, k + 1]*(\[Lambda])=(1 - 2*k*\[Lambda])* Subscript[A, k]*(\[Lambda])+ \[Lambda]*(\[Lambda]+ 1)* D[Subscript[A, k]*(\[Lambda]), \[Lambda]] Failure Failure
Fail
-28.28427122+24.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = 2^(1/2)+I*2^(1/2), k = 3}
-24.28427122+20.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = 2^(1/2)-I*2^(1/2), k = 3}
-28.28427122+16.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = -2^(1/2)-I*2^(1/2), k = 3}
-32.28427122+20.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = -2^(1/2)+I*2^(1/2), k = 3}
... skip entries to safe data
Successful
8.21.E3 0 t a - 1 e + i t d t = e + 1 2 π i a Γ ( a ) superscript subscript 0 superscript 𝑡 𝑎 1 superscript 𝑒 imaginary-unit 𝑡 𝑡 superscript 𝑒 1 2 𝜋 imaginary-unit 𝑎 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{a-1}e^{+\mathrm{i}t}\mathrm{d}% t=e^{+\frac{1}{2}\pi\mathrm{i}a}\Gamma\left(a\right)}} int((t)^(a - 1)* exp(+ I*t), t = 0..infinity)= exp(+(1)/(2)*Pi*I*a)*GAMMA(a) Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}]= Exp[+Divide[1,2]*Pi*I*a]*Gamma[a] Successful Failure - Successful
8.21.E3 0 t a - 1 e - i t d t = e - 1 2 π i a Γ ( a ) superscript subscript 0 superscript 𝑡 𝑎 1 superscript 𝑒 imaginary-unit 𝑡 𝑡 superscript 𝑒 1 2 𝜋 imaginary-unit 𝑎 Euler-Gamma 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{a-1}e^{-\mathrm{i}t}\mathrm{d}% t=e^{-\frac{1}{2}\pi\mathrm{i}a}\Gamma\left(a\right)}} int((t)^(a - 1)* exp(- I*t), t = 0..infinity)= exp(-(1)/(2)*Pi*I*a)*GAMMA(a) Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}]= Exp[-Divide[1,2]*Pi*I*a]*Gamma[a] Successful Failure - Successful
8.22.E1 Γ ( p ) 2 π z 1 - p E p ( z ) = Γ ( p ) 2 π Γ ( 1 - p , z ) Euler-Gamma 𝑝 2 𝜋 superscript 𝑧 1 𝑝 exponential-integral-En 𝑝 𝑧 Euler-Gamma 𝑝 2 𝜋 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle\frac{\Gamma\left(p\right)}{2\pi}z^{1-p}E_{p}\left% (z\right)=\frac{\Gamma\left(p\right)}{2\pi}\Gamma\left(1-p,z\right)}} (GAMMA(p))/(2*Pi)*(z)^(1 - p)* Ei(p, z)=(GAMMA(p))/(2*Pi)*GAMMA(1 - p, z) Divide[Gamma[p],2*Pi]*(z)^(1 - p)* ExpIntegralE[p, z]=Divide[Gamma[p],2*Pi]*Gamma[1 - p, z] Successful Successful - -
8.22.E3 ζ x ( s ) = k = 1 k - s P ( s , k x ) subscript 𝜁 𝑥 𝑠 superscript subscript 𝑘 1 superscript 𝑘 𝑠 incomplete-gamma-P 𝑠 𝑘 𝑥 {\displaystyle{\displaystyle\zeta_{x}(s)=\sum_{k=1}^{\infty}k^{-s}P\left(s,kx% \right)}} zeta[x]*(s)= sum((k)^(- s)* (GAMMA(s)-GAMMA(s, k*x))/GAMMA(s), k = 1..infinity) Subscript[\[zeta], x]*(s)= Sum[(k)^(- s)* GammaRegularized[s, 0, k*x], {k, 1, Infinity}] Failure Failure Skip Error